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Abstract
Data mining and stream processing have become important fields of research in recent years. Many applications

can make use of the knowledge discovered from mining data streams, and such applications include stock market
analysis, weather predictions, social media analysis, sensor networks, and intrusion detection systems. Applying
classical data mining techniques (clustering, for example) to data streams in an efficient manner is difficult, since
a) distributed data sources are being deployed in increasing numbers and size, b) the dimension of time must
be considered, and c) the data sources may be noisy and inaccurate. Data stream processing techniques include
sketching, sliding windows, and uncertain data stream processing, where the latter is used to process fuzzy/noisy
data streams by addressing the uncertainty of the data in an efficient manner. Various types of data stream processing
(count-min sketch, for example), clustering (k-means, for example), and uncertain data stream clustering algorithms
(FDBSCAN, for example) are explored in the present work, along with their complexity and other important details.

1 INTRODUCTION
Data mining and stream processing has become an important field of research in recent years. Distributed data
sources are being deployed in increasing numbers (for example, sensor networks), which increases the global volume
of data being created and the number of streams to be processed, and the speed at which the data is being produced
by the data sources is also increasing (higher frequency sensor readings, for example). This makes it difficult to apply
classical data mining techniques efficiently [23]. Furthermore, value can also be found from processing these data
sources, enabling knowledge discovery that may help analysts make educated business intelligence decisions that
were not previously possible. Stream processing applications include stock market analysis, weather information
aggregation, sensor network analysis, and network intrusion detection [26].

1.1 Problem Statement
Novel challenges arise when applying classical data mining techniques to data streams. These techniques (for
example, clustering) are struggling to efficiently process the large number of distributed data streams, since these
classical data mining techniques were designed for static datasets, while data streams are dynamic in nature. Static
datasets have a fixed number of data instances, while the number of elements in data streams is unbounded. A new
dimension must also be consider in data stream processing algorithms; that is, the dimension of time, where older
elements should be weighted with less importance compared to newer instances [26][12]. Furthermore, there are
usually time and resource constraints in the domain of stream processing, which means one-pass algorithms and
efficient techniques will be required to summarize statistics over a stream [23][18].
Consider an example stream summary problem that requires storing all the elements of the stream in memory.

Solving such a problem naively may not be possible, since the stream could be unbounded or there may be resource
constraints that make it impossible to store the entire stream in memory.

1.2 Motivation
To address the challenges of stream processing, a variety of data mining techniques are used, which include
sketch techniques, stream clustering, and uncertain data stream clustering.
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• Sketch techniques are used in practice to approximate summaries of streams in a quick and efficient manner
[8].

• Data stream clustering, an important subset of the clustering problem, attempts to group similar objects that
evolve over time in a stream.

• Uncertain data stream clustering combines notions from both clustering and stream processing. In uncertain
data streams, data instances are fuzzy (have noise and inaccuracies) and have a probabilistic nature. Clustering
these objects together requires probability distribution comparison techniques instead of using standard
distance metrics (such as the Euclidean distance, for example) [2][14].

Detailed application examples of uncertain data stream clustering follow:

• Electing a cluster leader of nearby wireless devices [24]. For example, a mobile phone may gather sensor data
from its nearby peers via short-range wireless protocols. To elect a leader, location data is required, which
may take the form of uncertain data streams, since the sensor accuracy and GPS noise add an element of
uncertainty to the GPS data streams. By electing a leader using uncertain data stream clustering, the peers in
a cluster can save bandwidth by avoiding unnecessary cellular network communicate, which is achieved by
only communicating with a nearby leader over a cheaper wireless medium (such as Bluetooth or Wi-Fi, for
example).

• Clusteringmoving objects, where the underlying state of the object changes (for example, ambient temperatures
or sensor reading databases), where the data is uncertain and the distribution is changing over time [20][24][7].

• At times, the data stored in the stream data structure is not 100% accurate. This could be the case for the
following reasons: a) in a security domain, for privacy reasons, noise is added to the data to keep the data
sources anonymous, or b) for bandwidth limitation reasons [20]. Clustering these types of noisy data structures
could be done using uncertain data stream clustering algorithms.

• An application of querying uncertain data is obtaining the actual temperature reported by various sensors.
Since the temperature may change, querying the data from the last sensor reading may not represent the
actual temperature at the time of the query [2][7]. Probability density functions can also be used to represent
sensor data to enable querying uncertain data from temperature sensors [7].

Unfortunately, uncertainty complicates data stream clustering [6]. Traditional clustering typically involves
unsupervised machine learning and grouping similar objects together in a heuristic fashion by using distance metric
to compare data objects. Uncertain data clustering uses a metric to compare probability density/mass functions to
compare distances between objects. As such, a naive approach for clustering uncertain data will require many more
distance computations compared to traditional clustering. Therefore, further research in the area of uncertain data
stream clustering is required for designing clever optimizations and efficient approximations [24].

1.3 Paper Overview
This paper is structured as follows: section 2 contains some background, related work, and key mathematical
definitions to help a reader understand the data mining algorithms discussed in next sections; section 3 presents a
detailed review of algorithms related to clustering, stream processing, and uncertain data stream clustering, which
may include pseudo-code, complexity analysis, and algorithm correctness; section 4 provides question and answer
pairs related to the algorithms discussed in the present work; and section 5 concludes the present work with a
summary of the literature discussed in the present work and some future work that could be done to improve the
present work.

2 BACKGROUND AND RELATEDWORK
This section discusses some necessary background required to present algorithms for sketching, clustering, stream
processing, uncertain data stream clustering, and other related data mining algorithms.
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2.1 Definitions
Some general mathematical concepts related to data mining are defined in this section. Mathematical definitions
that are strongly related to topics presented later in the present work are not presented in this section, but rather
presented in the appropriate later section.
Definition 1. 2-universal hash functions

According to [19], let 𝐻 = {ℎ𝑖}𝑘𝑖=1 define a hash family of 𝑘 hash functions, where 𝐷 is the input domain of each
hash function and 𝑥 ∈ 𝐷 , ℎ𝑖 (𝑥) → {0, 1, ..., 𝑛 − 1} ∀ 𝑖 ∈ {1, 2, ..., 𝑘}; that is, hashing an element 𝑥 will produce an
integer between 0 and 𝑛 − 1. 𝐻 is said to be 2-universal if ∀𝑥,𝑦 ∈ 𝐷 ,

Pr (ℎ (𝑥) = ℎ (𝑦)) ≤ 1
𝑛

, where 𝑥 ≠ 𝑦 and ℎ is sampled from 𝐻 uniformly at random.
Definition 2. Metric

According to [3], given a set 𝑋 , a metric is a function d: X × X→ R such that, for any 𝑥 , 𝑦, 𝑧 ∈ 𝑋 , we have:

𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 : 𝑑 (𝑥,𝑦) ≥ 0 (𝑎)
𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑜 𝑓 𝑖𝑛𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑙𝑒𝑠 : 𝑑 (𝑥,𝑦) = 0 ⇔ 𝑥 = 𝑦 (𝑏)

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 : 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥) (𝑐)
𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 : 𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑥,𝑦) + 𝑑 (𝑧,𝑦) (𝑑)

Definition 3. Sum of squares error - SSE

According to [11], the SSE is defined as:

SSE =
1
2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥)2

, where 𝑛 is the number of instances, 𝑥𝑖 is the value of the 𝑖th data instance, and 𝑥 is the mean of the data instances.

2.2 Distance and Divergence Measures
This sections presents a few important distance and divergence measures related to comparing two probability
distributions. According to [3], in stream processing, it is important to compare two different data streams together
using a distance or divergence measure. The Kullback-Leibler-divergence and Hellinger distance are popular
examples of such measures. Furthermore, there are two classes of measures, namely, the f -divergences and the
Bregman divergences.

2.2.1 f-Divergence. According to [3], the f -divergence class of measure is defined as follows: let 𝑝 and 𝑞 be two
distributions with the same number of points and let 𝑓 :(0,∞) → R denote a complex function, such that 𝑓 (1) = 0.
The 𝑓 -divergence of 𝑞 from 𝑝 is:

D𝑓 (𝑝) =
∑
𝑖∈Ω

𝑞𝑖 𝑓

(
𝑝𝑖

𝑞𝑖

)
, where Ω is the domain of points, and 𝑞𝑖 and 𝑝𝑖 are the 𝑖th point of 𝑞 and 𝑝 , respectively. Also, by convention

0𝑓
( 0

0
)
= 0, 𝛼 𝑓

( 0
𝛼

)
= 𝛼 lim

𝑢→0
𝑓 (𝑢), and 0𝑓

(
𝑎
0
)
= 𝛼 lim

𝑢→∞
𝑓 (𝑢) /𝑢 if these limits exist.
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2.2.2 Kullback-Leibler Divergence. According to [14], the Kullback-Leibler Divergence is a measure to compare two
probability distributions and is defined in equation 1:

𝐷 (𝑓 ∥ 𝑔) =
∑
𝑥 ∈𝑌

𝑓 (𝑥)log 𝑓 (𝑥)
𝑔(𝑥) (1)

, where 𝑓 and 𝑔 are probability mass functions in a discrete domain 𝑌 . In the case where 𝑓 and 𝑔 are probability
mass functions and 𝑌 is a continuous domain, the KL-Divergence can be defined by equation 2:

𝐷 (𝑓 ∥ 𝑔) =
∫
𝑌

𝑓 (𝑥)log 𝑓 (𝑥)
𝑔(𝑥) d𝑥 . (2)

It is also the case that 𝐷 (𝑃 ∥ 𝑄) ≥ 0, such that 𝐷 (𝑃 ∥ 𝑄) = 0 when 𝑃 = 𝑄 , where 𝑃 and 𝑄 are the objects with
probability distribution functions 𝑓 and 𝑔, respectively. As 𝑃 and 𝑄 become more similar (as their probability
distributions become more similar), 𝐷 (𝑃 ∥ 𝑄) approaches 0.
In the case of a discrete domain 𝑌 , we can define the probability mass function of an object 𝑃 as shown in equation

3:

𝑃 (𝑥) = |𝑝 ∈ 𝑃 |𝑝 = 𝑥 |
|𝑃 | (3)

, and by applying equation 3 with equation 1, we can compute the KL-Divergence of some object 𝑃 and 𝑄 from
domain 𝑌 as shown in equation 4:

𝐷 (𝑃 ∥ 𝑄) =
∑
𝑥 ∈𝑌

𝑃 (𝑥)log 𝑃 (𝑥)
𝑄 (𝑥) . (4)

In the case where 𝑌 is a continuous domain, we estimate 𝐷 (𝑃 ∥ 𝑄) as shown in equation 5, assuming 𝑃 =
{𝑝1, 𝑝2, ..., 𝑝𝑠 },

�̂� (𝑃 ∥ 𝑄) = 1
𝑠

𝑠∑
𝑖=1

log
𝑃 (𝑝𝑖)
𝑄 (𝑝𝑖)

. (5)

, where we assume that 𝑥 ∈ 𝑌 only when 𝑃 (𝑥) > 0, which also means 𝑄 (𝑥) > 0. To make sure this assumption
holds, smoothing can be used. We can smooth the probability distribution of 𝑃 by applying equation 6:

𝑃 (𝑥) = 𝑃 (𝑥) + 𝛿

1 + 𝛿 |𝑌 | (6)

, where 0 < 𝛿 < 1 is the smoothing parameter that can be used to adjust the desired accuracy of ˆ𝑃 (𝑥), and |𝑌 | is
the number of possible values in the domain 𝑌 (use the integral if 𝑌 is continuous). The error can be defined by
equation 7:

|𝑃 (𝑥) − 𝑃 (𝑥) | =
���1 − 𝑃 (𝑥) |𝑌 |

1/𝛿 + |𝑌 |

��� ∈ [
0,
max{1, |1 − |𝑌 | |}

1/𝛿 + |𝑌 |

]
. (7)

University of Ottawa COMP5112 Fall 2020 Project Paper



Patrick Killeen 5

2.2.3 Important distance measures. Some important and popular distance measures are defined in this section.

Definition 4. Manhattan distance

According to [16], the Manhattan distance can be defined as:

Manhattan (𝑎, 𝑏) =
𝑘∑
𝑖=1

|𝑎𝑖 − 𝑏𝑖 |

, where 𝑎 and 𝑏 are 𝑘-dimensional points. Note that Manhattan(𝑎, 𝑏) may also be denoted as ∥ 𝑎 − 𝑏 ∥1, which
is also known as the 𝐿1 distance/norm. To help explain this distance measure, to illustrate the radius of a point 𝑝
defined by the Manhattan distance, one could imagine a rectangle around 𝑝 .

Definition 5. L1 Norm

According to [13], the L1 norm is defined as:

L1 norm of the 𝑘-dimensional vector 𝑎 =∥ 𝑎 ∥1=

𝑘∑
𝑖=1

|𝑎𝑖 |

, where 𝑎 is a point in 𝑘-dimensional space. Note that ∥ 𝑎 ∥1 = Manhattan(𝑎, 0), where 0 in this case is the point
(0,0...,0).

Definition 6. Euclidean distance

According to [16], the Euclidean distance is defined as:

Euclidean (𝑎, 𝑏) =

√√√
𝑘∑
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2

, where 𝑎 and 𝑏 are 𝑘-dimensional points. Note that Euclidean(𝑎, 𝑏) may also be denoted as ∥ 𝑎 − 𝑏 ∥2, which
is also known as the 𝐿2 distance/norm. To help explain this distance measure, to illustrate the radius of a point 𝑝
using the Euclidean distance, one could imagine a circle around 𝑝 .

Definition 7. L2 Norm

According to [13], the L2 norm is defined as:

L2 norm of the 𝑘-dimensional vector 𝑎 =∥ 𝑎 ∥2=

√√√
𝑘∑
𝑖=1

|𝑎𝑖 |2

, where 𝑎 is a point in 𝑘-dimensional distance. Note that ∥ 𝑎 ∥2 = Euclidean(𝑎, 0), where 0 in this case is the point
(0,0...,0).

Definition 8. L∞ Norm

According to [13], the L∞ norm can be defined as:

L∞ norm of the 𝑘-dimensional vector 𝑎 =∥ 𝑎 ∥∞= max
𝑖∈{1,2,...,𝑘 }

|𝑎𝑖 |

, where 𝑎 is a point in 𝑘-dimensional space. The L∞ norm is the maximum element in the vector of 𝑎.
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2.3 Data stream processing
Data stream processing typically involves performing a series of computations in one pass (only iterating over the
elements once) on a large number of stream elements. There may be multiple distributed streams and real-time
requirements involved, which makes data stream processing not a trivial problem to solve [18].
According to [23], one should consider the cost to transmit, store, and compute when analyzing and designing

data stream processing algorithms. As data streams become large and the data rates increase, the streams will stress
modern static data processing algorithms, since the datasets are dynamic in nature as opposed to the standard
dataset such as a database, for example [26]. Therefore, efficient strategies for data stream processing must be
considered, since applications of data streaming include real-time stream analysis of evolving streams (for example,
stock exchange transactions). Communication is also an important consideration, since in the context of distributed
data streaming, the data streams may be physically separated, requiring communication to aggregate streams
together [26]. Some algorithms can be computed offline, but the real-time analysis requirements demand stream
processing analytic algorithms to be efficient and quick. Stream processing may be considered from a hierarchical
point of view, where the analytics and aggregations closer to the stream (from a latency point of view, starting from
the data source) must be fast and efficient; while moving design logic away from the data sources that are producing
the streams (up the data processing hierarchy with higher latency) will relax some of the real-time requirements
and other constraints of the stream processing algorithms. [18] present the following requirements on stream
processing systems:

• Data should keep moving
• It should be possible to query a data stream
• Delayed, missing, and out-of-order data should be handled
• Processing of a stream should be predictable and deterministic regardless of the time of data instance input
• It should be possible to aggregate/merge stored data with streaming data
• The safety and availability of the data should be ensured
• Applications should be automatically distributed and scaled with respect to the number and size of streams
• Real-time design must be considered
According to [26], the notion of time and data staleness must also be considered. Forgetting mechanisms (or

time-decay models) are used to compute statistics on the recent past of a data streams [12]. A literature review of
[12] and [26] reveals that there are a variety of time-decay models used to address the dimension of time in stream
processing, for example, exponential or polynomial decay models, sliding windows, and fading factors, which are
discussed below:

• Exponential or polynomial decay are examples of suchmodels, whichmay be used to attribute lessweight/significance
to older data instances.

• Sliding windows are another example of a time-decay model, which are either time-based (the data instances
in last 𝑁 time units, for example) or counter-based (the last 𝑁 items). In fact, sliding windows are one of the
most popular forgetting mechanisms used in the literature [12]. Interested readers are referred to example 2.1,
which illustrates how the mean of the elements in a stream can be computed over a sliding window.

• Fading factors are another time-decay model [12] and are explained further in section 2.3.1.
Applications of stream processing include intrusion detection systems, financial data systems, and sensor

networks, which probably involve some form of stream learning [26].
Challenges with learning from streams include the following [12]:
• There is a continuous data flow with data streams instead of a static sample of identically independently
distributed (i.i.d.) data instances from standard static datasets (a database, for example).

• Instead of being static, the decision model evolves over time.
• The data instances are generated from a non-stationary distribution instead of being generated from a
stationary distribution.
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Example 2.1. Sliding window average

Compute the mean of the last𝑤 stream elements, 𝜇𝑤 , as follows:

𝜇𝑤 =
1
𝑤

𝑖∑
𝑘=𝑖−𝑤+1

𝑥𝑖

, where 𝑖 is the time, and 𝑥𝑖 is the stream element at time 𝑖 . Note that this example was inspired from [12].

2.3.1 Fading Factor. Fading factors are also another forgetting mechanism. According to [12], fading factors puts
less weight on older information as time moves forward. The fading sum, fading average, and fading increment are
examples of fading factors. These fading factors are defined below, where 𝑥𝑖 is the data instance from a stream
at time 𝑖 , and 𝛼 , a forgetfulness parameter, is defined as 0 ≪ 𝛼 ≤ 1, where ‘≪’ means "much smaller than" (for
example, 𝛼 = 0.999).

Definition 9. Fading sum

The fading sum 𝑆𝛼 (𝑖) is computed at time 𝑖 as:

𝑆𝛼 (𝑖) = 𝑥𝑖 + 𝛼 ·𝑆𝛼 (𝑖 − 1)

, where 𝑆𝛼 (1) = 𝑥1.

Definition 10. Fading increment

The fading increment 𝑁𝛼 (𝑖) is computed as:

𝑁𝛼 (𝑖) = 1 + 𝛼 ·𝑁𝛼 (𝑖 − 1)

, where 𝑁𝛼 (1) = 1. It is important to note that the following expressions holds:

lim
𝑖→∞

𝑁𝛼 (𝑖) = 1
1 − 𝛼

Definition 11. Fading average

By combining the fading increment and fading sum, the fading average𝑀𝛼 (𝑖) is computed as:

𝑀𝛼 (𝑖) = 𝑆𝛼 (𝑖)
𝑁𝛼 (𝑖) .

2.3.2 Uncertain data streams. A literature review of [2], [6], [7], [14] reveals that uncertain data streams consist of
objects who’s values are typically represented using probability distributions (as opposed to a specific value), where
a series of noisy/fuzzy data instances sampled from the object’s probability distribution are found in the stream. In
other words, each object 𝑜𝑖 in the data stream(s) 𝑆 has an uncertain dataset 𝐷𝑖 ⊆ 𝑆 , and the stream elements may
take the form {𝑥, 𝑝𝑥 , 𝑡 } ∈ 𝐷𝑖 , where 𝑥 is the data instance’s value, 𝑝𝑥 is the probability of the value 𝑥 , and 𝑡 is the
timestamp of reading/receiving the element
Domains where data sources can be treated as uncertain data streams typically occur when the data sources

have underlying uncertainty (inaccuracies/noise/fuzziness) in the data elements of the stream. Three examples of
uncertain data streams follow:
University of Ottawa COMP5112 Fall 2020 Project Paper
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• A stream of sensor data may be represented as an uncertain data stream, since sensors may be noisy and
their readings may be inaccurate. In the domain of vehicle diagnostics, an object 𝑜𝑖 could be the engine
temperature of the vehicle 𝑣𝑖 , and the engine temperature has sensor readings 𝑟 ∈ 𝐷𝑖 , which represent the
temperature readings of 𝑣𝑖 ’s engine temperature. This is an example of a continuous case of uncertain data
streams (temperature readings are real numbers). Since the engine temperature is continuously changing, a
probability distribution is an effective way to represent the vehicle’s temperature (a single sensor reading
would soon become stale, as it would probably not be correct to conclude the temperature reading at time 𝑡 + 1
is equal the reading from 𝑡 ). Furthermore, there may be many objects present in this uncertain data stream
(note that this stream may be distributed, one stream for each vehicle, for example), each object representing
the probability distributions of the engine temperature of various vehicles in a fleet.

• A stream of user review scores of various camera brands have an element of uncertainty. Users in this example
rate cameras with a score from 1 to 5 via an e-commerce website. This is an example of a discrete case of
uncertain data streams (the user scores are integers). The objects in this example are the ratings of cameras,
which are represented using the mean and variance of user scores for each camera, and the series of user
scores are the data instances. The uncertainty in this example can be modeled by the uncertainty in the user
score space; that is, two cameras may have the same mean rating, but they may in fact have different variances,
which introduces uncertainty when comparing camera ratings.

• Uncertainty may at times be introduced into a data stream intentionally. For example, in a privacy domain
where the user data should be anonymous/private for each user, a user’s data stream may have synthetic noise
added to it to provide privacy. This makes it difficult to deduce the true underlying values of the users/objects,
and instead, only the probability distributions of the objects may be manipulated and processed.

2.3.3 Sketch. Sketch techniques are used to store high velocity data streams while only using little memory
footprint, which enables efficient stream summarizing. Sketches also typically have efficient update complexity [26].
However, sketching techniques come at the cost of a trade-off between efficiency (memory and computational cost)
vs. accuracy. The applications of sketch techniques include clustering, anomaly detection, and frequent item mining
[6].

2.4 Coresets
A literature review of [1] and [6] reveals that coresets are geometric approximations of a set of points 𝑃 ; that is, a
coreset 𝑄 ⊆ 𝑃 is approximated to be geometrically similar to 𝑃 , which enables inefficient computations to be run on
𝑄 while approximating the result as if the computations were done on 𝑃 . An extent measure is some measure on
the extent of a set of points; for example, the diameter of a set of points is an extent measure. It can be costly to
compute an exact extent measure on a set of points 𝑃 ; for example, finding the volume (the extent measure) of the
smallest volume bounding box over 𝑃 ∈ R3 is O(𝑛3) with state-of-the-art algorithms.
As a result, approximation algorithms have been a research topic of interest, where a (1 + 𝜖)-approximation

algorithm, where 0 < 𝜖 < 1, estimates a extent measure with complexity O(𝑛𝑓 (𝜖)) or O(𝑛 + 𝑓 (𝜖)), for some function
of 𝜖 , 𝑓 . For such algorithms, it is assumed that there exists a coreset 𝑄 ⊆ 𝑃 , where the space complexity of 𝑄 is
1/𝜖O(1) and computing the extent measure on 𝑄 approximates the measure on 𝑃 , using some inefficient extent
measure computing algorithm. For example, in the shape fitting problem family, for shape 𝛾 and an extent measure
𝜇, a shape 𝛾∗ can be estimated by fitting 𝛾 to 𝑄 , such that 𝜇 (𝑄,𝛾) ≥ (1 − 𝜖) 𝜇 (𝑃,𝛾).

2.5 Clustering
A literature review of [5], [20], [21], [4], and [14], reveals that clustering involves grouping similar objects (or data
points) into relevant groups; that is, similar data points should be grouped together while objects that are different
should be in different clusters. There are two dimensions of clustering methods, namely:

• hierarchical clustering algorithms, and
University of Ottawa COMP5112 Fall 2020 Project Paper
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• partitioning clustering algorithms.
Partitioning clustering algorithms partition a dataset into a flat (or one-level) partition of 𝑘 clusters, where

similar objects are partitioned together. Hierarchical clustering splits the dataset, in an iterative fashion, into
different levels/subsets and further splits these levels into sublevels. The splitting continues until each subset has a
single object. A tree can be used to represent this clustering, and each node in the tree represents a cluster. OPTICS,
which is discussed in section 3.2.4, is an example of a hierarchical clustering algorithm.
Another clustering dimension is the type of clustering; that is, there are two main types of clustering:
• center-based (or optimization-based/distance-based) clustering, and
• density-based clustering
, which are used to cluster certain data (as opposed to uncertain data). Center-based clustering algorithms

group data points to the closest center (the k-means algorithm, which is discussed in section 3.2.1, is an example of
this type of clustering algorithm), while density-based clustering algorithms group objects by region/density
instead of using a center (DBSCAN, which is discussed in section 3.2.3, is an example of this type of clustering
algorithm), where dense regions (clusters) are separated by non-dense regions. Furthermore, for any clustering
algorithm, the resulting cluster correctness produced from the algorithm depends on the problem at hand [24].
The remainder of this section presents two special types of clustering problems, namely, fuzzy clustering and

uncertain data stream clustering.

2.5.1 Fuzzy Clustering. Fuzzy clustering is based on the idea that typically there is no perfect separation of objects
in datasets. Fuzzy clustering assigns a degree of membership (a value between 0 and 1, where 0 indicates no
membership and 1 indicates perfect membership) to objects for each cluster. In other words, an object may belong
to multiple clusters at once [20].

2.5.2 Uncertain Data Stream clustering. According to [24], in traditional data clustering, the objects are points
in space and a distance metric is used to compare the objects. In uncertain data stream clustering, objects are no
longer represented as data points in space, they are instead represented using a probability density functions (or
probability mass function). Measuring the distance value (using a standard metric, for example, Euclidean distance)
between two uncertain objects loses its meaning, since the single-valued distance measure fails to represent the
uncertainty between both object [21]. Imagine the case where we are trying to cluster two sets of points that have
the same mean. Clearly the center-based and density-based clustering approaches will fail, since both sets will have
large overlap. [14] propose using KL-divergence to address this, which enables the comparison between probability
distributions. They also mention that the world approach clustering technique can be used to cluster uncertain data.
An example of uncertain data stream clustering follows, which is an extension of the vehicle diagnostics domain

example from section 2.3.2: in this example, clustering uncertain data streams would involve grouping together the
vehicles that have similar engine temperature probability distributions (as opposed to grouping the temperature
readings)

3 DATA MINING ALGORITHMS
This section explores key data mining algorithms: section 3.1 presents stream processing algorithms, section 3.2
presents popular clustering algorithms, and section 3.3 presents uncertain data stream clustering algorithms.

3.1 Data stream processing algorithms
Important data stream processing algorithms are discussed in this section.

3.1.1 Exponential Histograms. A literature review of [26] and [9] reveals exponential histograms are histograms
that summarize aggregates over sliding windows. A sliding window of the most recent 𝑁 bits from a stream are
partitioned into exponentially sized (2𝑖 ) buckets. Whenever a bit ‘1’ is received, the buckets are re-arranged, possibly
merging buckets, and when a ‘0’ is received, the buckets have no change. These buckets are used to query an
University of Ottawa COMP5112 Fall 2020 Project Paper
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estimation of the number of ‘1’s in the sliding window. Querying a section of the window (for example, querying
the number of true bits in some range), involves aggregating the buckets that overlap with the queried range.
Error Estimation: the last bucket may be partially outside the sliding window, which can introduce inaccuracy

when querying the exponential histogram. When a bucket no longer intersects with the sliding window, it is
forgotten. Note that there may be some error due to the last bucket only partially overlapping with the sliding
window, although this bucket’s size bounds the error. At least half of the last bucket has to be overlapping with a
query’s range to be included in the query. Furthermore, the invariant below is maintained for all the buckets 𝑗 :

𝐶 𝑗

2
(
1 +

𝑗−1∑
𝑖=1

𝐶𝑖

) ≤ 𝜖 (8)

, where 𝜖 is the maximum acceptable relative error, and 𝐶 𝑗 denotes the size (or number of true bits that have
arrived in the bucket range).
Complexity analysis: let 𝑁 denote the length of the sliding window,𝑢 (𝑁, 𝑆) denote the upper bound on number

of items that can arrive in one time unit for stream 𝑆 on a sliding window of length𝑁 , and𝑔(𝑁, 𝑆) = max (𝑢 (𝑁, 𝑆), 𝑁 ).
The time and memory complexity analysis are found below:

• Memory: O
(
log2 (𝑔 (𝑁, 𝑆)) /𝜖

)
= # buckets× bucket size =O(log (𝑢 (𝑁, 𝑆)) /𝜖) ×O(log (𝑁 ) + loglog (𝑢 (𝑁, 𝑆)))

• Amortized (usual) update: O(1)
• Worst case update: O(log (𝑢 (𝑁, 𝑆)))
• Query over sliding window
– entirety: O(1)
– subset with bucket linear search: O(log (𝑢 (𝑁, 𝑆) /𝜖))
– subset with bucket binary search: O(log (log (𝑢 (𝑁, 𝑆) /𝜖)))

3.1.2 Count-min sketch. A literature review of [8], [6], [3], and [26] reveals that count-min sketch is a space-aware
frequency estimation technique based on hashing. There is a trade-off between the accuracy of the estimated
frequency of elements found in a set and the space required to store the count-min sketch data structures.
For some given input data stream 𝑆 , the frequency 𝑓𝑣 of a data instance 𝑣 ∈ 𝑆 is estimated by count-min sketch as

𝑓𝑣 such that Pr(|𝑓𝑣 − 𝑓𝑣 | > 𝜖 𝑓𝑣) < 𝛿 , where 𝜖 and 𝛿 > 0 are tuning parameters. The frequency estimation is performed
by using a 𝑡 × 𝑘 2D-array, 𝐶𝑀𝑆 , of counters, which are incremented using 𝑡 2-universal hash functions (one hash
function ℎ𝑖 for each row), where 𝐶𝑀𝑆 [𝑖, 𝑗] denotes the counter/cell at row 𝑖 and column 𝑗 , 𝑘 = 2

𝜖
, and 𝑡 =

⌈
log( 1

𝛿
)
⌉
.

Each time an object 𝑜 with value 𝑣 is read from 𝑆 , the counters 𝐶𝑀𝑆 [𝑖, ℎ𝑖 (𝑜)], ∀ 𝑖 ∈ {1,2,...,𝑡 }, are incremented by 𝑣
(incrementing by 1 keeps track of an object’s frequency). Computing 𝑓𝑜 is done by finding the minimum counter in
all rows with respect to the hashes of 𝑜 ; that is, 𝑓𝑜 = min

𝑖∈{1,2,...,𝑡 }
𝐶𝑀𝑆 [𝑖, ℎ𝑖 (𝑜)] [26].

3.1.3 Sketch*-metric. The sketch*-metric, proposed by [3], is a metric for estimating the distance between two
streams. It is based on count-min sketch and is defined by equation 9:

𝜙𝑘 (𝑝 ∥ 𝑞) = max
𝑝∈𝑃𝑘 (Ω)

𝜙
(
𝑝𝜌 ∥𝑞𝜌

)
with ∀𝑎 ∈ 𝜌, 𝑝𝜌 (𝑎) =

∑
𝑖∈𝑎

𝑝 (𝑖) (9)

, where 𝑘 is a given precision parameter, 𝜙 is a generalized metric that satisfies the metric properties defined in
equation 2 on the set of all Ω-point distributions.
To compute the sketch *-metric between two streams 𝜎1 and 𝜎2, the count-min sketch algorithm (see section 3.1.2)

is applied to both streams. Let 𝐶𝑀𝑆1 and 𝐶𝑀𝑆2 denote the count-min array structures used to represent 𝜎1 and 𝜎2,
respectively, 𝐶𝑀𝑆𝑖 [ 𝑗] denote the 𝑗th row of 𝐶𝑀𝑆𝑖 , and let 𝐶𝑀𝑆𝑖 [ 𝑗] [𝑘] = 𝐶𝑀𝑆𝑖 [ 𝑗, 𝑘] for notation convenience. The
sketch *-metric computation algorithm proceeds by computing the metric 𝜙 between all the 𝑡 rows of 𝐶𝑀𝑆1 and
𝐶𝑀𝑆2 and finding the maximum 𝜙 (𝐶𝑀𝑆1 [𝑖] ∥ 𝐶𝑀𝑆2 [𝑖]), ∀ 𝑖 ∈ {1,2,...,𝑡 }.
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Algorithm 1: Count-min sketch frequency estimation [22]
Input: a stream 𝑆 of 𝑛 numbers, 𝑟 hash functions ℎ1, ℎ2, ..., ℎ𝑟 , where ℎ𝑖 : N→ {1,2,...,𝑏}, where 𝑏 is the
number of buckets.
Output: estimated frequency of an integer 𝑘 found in 𝑆 ;
#initialize count-min structure
for 𝑖 ∈ {1, 2, ..., 𝑟 } do

for 𝑗 ∈ {1, 2, ..., 𝑏} do
𝐶𝑀𝑆 [𝑖, 𝑗] := 0;

#populate count-min structure
for 𝑖 ∈ {1, 2, ..., 𝑛} do

for 𝑗 ∈ {1, 2, ..., 𝑟 } do
𝐶𝑀𝑆 [ 𝑗, ℎ 𝑗 (𝑆 [𝑖])] := 𝐶𝑀𝑆 [ 𝑗, ℎ 𝑗 (𝑆 [𝑖])] + 1;

On frequency estimation query of integer 𝑘 return min
𝑖∈{1,2,...,𝑟 }

𝐶𝑀𝑆 [𝑖, ℎ𝑖 (𝑘)];

To test their proposed sketch *-metric, the authors compare their metric to the Bhattacharyya distance, and to
the Kullback-Leibler and Jensen-Shannon divergences, using synthetic datasets and datasets obtained from the web.
Complexity analysis: this algorithm uses 𝑂 (𝑡 (log𝑛 + 𝑘log𝑚)) memory, where 𝑘 and 𝑡 are given parameters, 𝑛

is the size of the stream objects (for example, the dimension of geometric points), and𝑚 is the unknown number of
data instances in the streams.
Proof : since there are𝑚 objects in each stream and count-min sketch counts these objects, 𝑂 (𝑘𝑡 log𝑚) bits can be

used to represent the 𝑡 × 𝑘 counters in each 𝐶𝑀𝑆1 and 𝐶𝑀𝑆2, and the hash functions can be stored using 𝑂 (𝑡 log𝑛)
bits.

Algorithm 2: Sketch *-metric computation [3]
Input: two input streams 𝜎1 and 𝜎2, the distance metric 𝜙 , space vs. accuracy parameters 𝑘 and 𝑡 ;
Output: the distance 𝜙 between 𝜎1 and 𝜎2;
Choose 𝑡 hash functions ℎ: [𝑛] → [𝑘], each from a 2-universal hash function family;
#initialize count-min structures
for 𝑥 ∈ {1, 2} do

for 𝑖 ∈ {1, 2, ..., 𝑡} do
for 𝑗 ∈ {1, 2, ..., 𝑘} do

𝐶𝑀𝑆𝑥 [𝑖, 𝑗] := 0;

#fill count-min structures
for 𝑥 ∈ {1, 2} do

for 𝑎 𝑗 ∈ 𝜎𝑥 do
𝑣 = 𝑎 𝑗 ;
for 𝑖 = 1 to 𝑡 do

𝐶𝑀𝑆𝑥 [𝑖, ℎ𝑖 (𝑣)] := 𝐶𝑀𝑆𝑥 [𝑖, ℎ𝑖 (𝑣)] + 1;

#compute sketch *-metric between 𝜎1 and 𝜎2 streams
On query 𝜙𝑘 (𝜎1 ∥ 𝜎2) return 𝜙 = max

𝑖∈{1,2,...,𝑡 }
𝜙 (𝐶𝑀𝑆1 [𝑖],𝐶𝑀𝑆2 [𝑖]);

3.1.4 ECM-sketch - Exponential Count-Min Sketch. ECM-sketch, proposed by [26], is a method for summarizing
distributed data streams by using sliding windows. It also supports accuracy guarantees [6]. It can find frequencies,
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find heavy hitters (frequent elements), and calculate quantiles in the sliding windows. It is based on count-min
sketches (discussed in section 3.1.2) and exponential histograms (discussed in section 3.1.1).
A ECM-sketch differs from count-min sketch as the counters in the 2D array, 𝐶𝑀𝑆 , are replaced with sliding

windows (implemented using exponential histograms) of size 𝑁 , where 𝑁 is either the number of time units
(time-based sliding windows) or the number of items (counter-based). This means that when querying a range in
the length of a sliding window, the estimated counter 𝑥 will be in the range of (1 ± 𝜖) 𝑥 of the actual value 𝑥 of the
counter. In other words, when a stream element 𝑜 with value 𝑥 arrives, instead of incrementing all the counters 𝐵 =
𝐶𝑀𝑆 [ 𝑗, ℎ 𝑗 (𝑜)], ∀ 𝑗 ∈ {1, 2, ..., 𝑡} by 𝑥 (where ℎ 𝑗 is the 𝑗th hash function and 𝑡 is the number of hash functions, or
rows, in the count-min structure), ECM-sketch inserts 𝑥 into all the sliding windows in 𝐵.
ECM-sketch supports a few types of queries, namely, point queries, inner product queries, and self-join queries

(also known as second frequency moment 𝐹2). It is worth noting that by setting the count-min sketch parameters 𝑡
=
⌈
ln 1

𝛿

⌉
and 𝑘 =

⌈
𝑒
𝜖

⌉
, the Pr(the result of point queries will have an error less than 𝜖 ∥ 𝑎 ∥1) ≥ 1 - 𝛿 , where ∥ 𝑎 ∥1 in

this case is the number of processed items in stream 𝑎, and 𝜖 and 𝛿 are ECM-sketch parameters. These types of
queries are discussed below:

• Point query: suppose we are working with a stream 𝑎. This type of query takes the form (𝑜, 𝑟 ), where 𝑜
is the identifier of the object/item and 𝑟 is the range, which takes the form of the number of time units or
number of items. Such queries attempt to answer how many times the value of 𝑜 has occurred in the range 𝑟
in the sliding windows, which is denoted as 𝑓𝑎 (𝑜, 𝑟 ), and let 𝑓𝑎 (𝑜, 𝑟 ) denote the estimated result. To compute
such queries, all the sliding windows with respect to the hash (for all 𝑡 hash algorithms) of 𝑜 are used to
compute the estimated frequency of 𝑜 for ℎ 𝑗 , denoted as 𝐸𝑎

(
𝑗, ℎ 𝑗 (𝑜) , 𝑟

)
, and 𝑓𝑎 (𝑜, 𝑟 ) is computed as 𝑓𝑎 (𝑜, 𝑟 )

= min
𝑗 ∈{1,2,...,𝑡 }

𝐸𝑎
(
𝑗, ℎ 𝑗 (𝑜) , 𝑟

)
. The space complexity will now be discussed:

– Let 𝜖𝑠𝑤 denote the parameter 𝜖 for the exponential histograms (sliding windows), 𝜖𝑐𝑚 denote the parameter
𝜖 of count-min sketch, and 𝛿𝑐𝑚 denote the parameter 𝛿 of count-min sketch. The authors show that for
all 𝜖𝑐𝑚 and 𝜖𝑠𝑤 satisfying 𝜖 = 𝜖𝑠𝑤 + 𝜖𝑐𝑚 + 𝜖𝑠𝑤𝜖𝑐𝑚 , the error is at most 𝜖 ∥ 𝑎 ∥1 and the space complexity is
O( ln

2𝑍 ln(1/𝛿𝑐𝑚)
𝜖

), where Pr(|𝑓 (𝑜, 𝑟 ) − 𝑓 (𝑜, 𝑟 ) | ≥ 𝜖 ∥ 𝑎 ∥1) ≤ 𝛿 = 𝛿𝑐𝑚 and 𝑍 is the maximum count of elements
in the sliding windows.

• Inner product and self-join query: inner product queries are denoted as 𝑎𝑟⊙𝑏𝑟 =
∑
𝑜∈𝐷

𝑓𝑎 (𝑜, 𝑟 ) × 𝑓𝑏 (𝑜, 𝑟 ),
where 𝑎𝑟 and 𝑏𝑟 are sub-streams of streams 𝑎 and 𝑏, respectively, in the range 𝑟 , and 𝐷 is the domain of input
elements. Self-joins are special inner products of the form 𝑎𝑟⊙𝑎𝑟 . The authors show that inner joins in a given
range 𝑟 have the following properties:

𝑃𝑟

(
| �𝑎𝑟 ⊙ 𝑏𝑟 − 𝑎𝑟 ⊙ 𝑏𝑟 | ≥

(
𝜖2
𝑠𝑤 + 2𝜖𝑠𝑤 + 𝜖𝑐𝑚 (1 + 𝜖𝑠𝑤)2) ∥ 𝑎𝑟 ∥1∥ 𝑏𝑟 ∥1

)
≤ 𝛿 = 𝛿𝑐𝑚

, where �𝑎𝑟 ⊙ 𝑏𝑟 is the estimation of 𝑎𝑟 ⊙ 𝑏𝑟 . Note that �𝑎𝑟 ⊙ 𝑏𝑟 = min
𝑗 ∈{1,2,...,𝑡 }

𝑘∑
𝑖=1

𝐸𝑎 (𝑖, 𝑗, 𝑟 ) × 𝐸𝑏 (𝑖, 𝑗, 𝑟 ).

The authors analyzed ECM-sketch when replacing exponential histograms with Deterministic Wave and Ran-
domized Wave, which are also sliding window algorithms.
Aggregation of Exponential Histograms: the authors also propose an aggregation algorithm to aggregate

many exponential histograms 𝐸𝐻𝑖 into a single aggregated histogram 𝐸𝐻⊕; that is, 𝐸𝐻⊕ = 𝐸𝐻1 ⊕ 𝐸𝐻2 ⊕ ... ⊕ 𝐸𝐻𝑛 ,
for some aggregation operator ‘⊕’. This proves that by using their aggregation algorithm and by initializing 𝐸𝐻⊕
with error parameter 𝜖 ′, they can answer queries (over the 𝑛 data streams) with a maximum relative error of
(𝜖 + 𝜖 ′ + 𝜖𝜖 ′), where 𝜖 is the parameter shared by all 𝐸𝐻𝑖 .
Complexity analysis for ECM-sketch using exponential histograms: let 𝑁 denote the length of the sliding

window, 𝑢 (𝑁, 𝑆) denote the upper bound on number of items that can arrive in one time unit for stream 𝑆 on a
sliding window of length 𝑁 , and 𝑔(𝑁, 𝑆) = max (𝑢 (𝑁, 𝑆), 𝑁 ).

• Memory: O
( 1
𝜖
ln

( 1
𝛿

)
ln2 (𝑔 (𝑁, 𝑆))

)
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• Amortized (usual) update: O
(
ln

( 1
𝛿

) )
• Worst case update: O

(
ln

( 1
𝛿

)
ln (𝑢 (𝑁, 𝑆))

)
• Query: O

(
ln

( 1
𝛿

)
ln (𝑢 (𝑁, 𝑆)) /

√
𝜖
)

3.1.5 EU-sketch - Extended Uncertain Sketch. [6] propose EU-sketch in their approach, which is similar to the
ECM-sketch algorithm discussed in section 3.1.4. EU-sketch is based on count-min sketch (discussed in section
3.1.2), and instead of storing an object frequency counter in CMS, the probability of the data sample and time of
observation are stored in time-based sliding windows instead; that is, the cells of CMS are sliding window buckets.
Buckets are organized into two parts, namely, part 𝐴 and part 𝐵. The probabilities of data instances, before some
time 𝑡 ′, are stored in part 𝐴 of a bucket, and data instances arriving after 𝑡 ′ are stored in part 𝐵 of the bucket. All
probabilities in 𝐴 are eventually removed (fall out of the sliding window). To avoid impacting the quality of the
clustering results, 𝑡 ′ must be chosen carefully based on the size of part 𝐴 (denoted as |𝐴|) and part 𝐵 (denoted as
|𝐵 |) of the bucket. As data instances arrive, 𝑡 ′ = (𝑡1 + 0.5 (𝑡𝑛 − 𝑡1)), and when a bucket is full, probabilities in part 𝐴
are removed if |𝐴| > |𝐵 |. Otherwise, in the case where a bucket is full and |𝐴| ≤ |𝐵 |, let 𝑡 ′ = (𝑡 ′ + log (𝑡𝑛 − 𝑡1)) and
the probabilities in part 𝐴 are removed.

3.2 Clustering Algorithms
Important data clustering algorithms are discussed in this section.

3.2.1 K-Means. A literature review of [17] and [15] reveals that k-means is an efficient and popular unsupervised
clustering algorithm. It clusters a dataset into 𝑘 clusters, where 𝑘 is a user-defined parameter representing the
number of desired clusters. First, 𝑘 centroids are chosen randomly from among points (or they can be randomly
chosen) in the dataset, where each centroid represents a cluster center. Each point is then compared to the 𝑘 centroids
and are assigned to the cluster of the nearest centroid. The centroids are recomputed as the mean Euclidean distance
of all points to the cluster’s centroid. The process is restarted until convergence occurs; that is, when the centroids
do not change after an iteration. The performance of k-means is largely dependent on the number of iterations
required until convergence.
Complexity: O

(
𝑖𝑘𝑛2) [25], where 𝑖 is the number of iterations, 𝑘 is the desired number of clusters, and 𝑛 is the

number of points. Note that 𝑖 ≃ 𝑛, so the complexity is essentially O
(
𝑛2) .

Correctness: k-means may converge to a local minima and it can also create empty clusters due to its greedy
nature [27]. The sum of squares error (see equation 3) is used to evaluate the quality of clusters [17]. High quality
clusters should minimize:

𝑆𝑆𝐸 =

𝑘∑
𝑖=1

∑
𝑥 𝑗 ∈𝐶𝑖

(
𝑥 𝑗 − 𝜇𝑖

)2

, where 𝑘 is the number of clusters, 𝑥 𝑗 is a point in cluster 𝐶𝑖 , and 𝜇𝑖 is the mean distance of all points to centroid
𝑖 .

3.2.2 K-Medoids. According to [14], k-medoids is a clustering problem that is similar to the problem the k-means
algorithm (discussed in section 3.2.1) addresses, but instead of representing a cluster as the mean of all objects in
the cluster, the k-medoids problem represents the cluster using an object in the cluster. K-medoids is a center-based
partitioning clustering algorithm. An object representative, named a medoid, is chosen to represent a cluster, instead
of using a centroid [27]. A medoid of a cluster 𝐶 is defined as the data instance (or object) with the smallest sum of
dissimilarities compared to all other instances in 𝐶:

medoid (𝐶) = min
𝑥𝑖 ∈𝐶

∑
𝑥 𝑗 ∈𝐶

𝑑
(
𝑥𝑖 , 𝑥 𝑗

)
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Algorithm 3: K-means
Input: desired number of clusters 𝑘 , and dataset of 𝑑-dimensional points 𝑋 of size 𝑛.
Output: a set of 𝑘 clusters (subsets) of 𝑋
#initialize 𝑘 random centroids
𝐶 := {𝑐1,𝑐2,...,𝑐𝑘 }, where 𝑐𝑖 is a random point from R𝑑 ;
#initialize clusters (sets of object/data points)
𝑂 : = {𝑜1,𝑜2,...,𝑜𝑘 }, where 𝑜𝑖 = ∅;
#keep looping until centroids remain the same after 2 iterations
while centroids have not converged do

#iterate the points
for 𝑖 ∈ {1, 2, ..., 𝑛} do

#find the index of nearest cluster to point 𝑥𝑖
find 𝑗 such that min

𝑗 ∈{1,2,...,𝑘 }
∥ 𝑥𝑖 − 𝑐 𝑗 ∥2

#assign the point 𝑥𝑖 to nearest nearest cluster
assign 𝑥𝑖 to cluster 𝑜 𝑗

#recompute centroids
for 𝑗 ∈ {1, 2, ..., 𝑘} do

𝑐 𝑗 = 1
|𝑜 𝑗 |

∑
∀𝑥 ∈𝑜 𝑗

∥ 𝑥 − 𝑐 𝑗 ∥2

return 𝑂

, where 𝑑 is the dissimilarity function (a distance function), and 𝑥𝑖 is the 𝑖th instance in 𝐶 .
The quality of clusters are evaluated in a similar way to k-means, but instead the absolute error (total distance) is

used:

𝑇𝐷 =

𝑘∑
𝑖=1

∑
𝑥 𝑗 ∈𝐶𝑖

𝑑
(
𝑥 𝑗 ,𝑚𝑖

)
, where 𝑚𝑖 is the representative object/instance of cluster 𝑖 . Finding the global optimum for this problem is

NP-hard [27].
A popular algorithm to solve the k-medoids problem is the Partitioning Around Medoids (PAM) algorithm,

and the authors present some of its variations. PAM consists of two algorithms, BUILD and SWAP [27].
• BUILD will create the initial clustering. It will find the instance/object that minimizes TD, and once found,
this object is assigned as the representative object for the first medoid. This process continues for the new
object that minimizes TD to find the next medoid, until 𝑘 representative objects are found.

• SWAP will optimize the clusters by swapping out medoid objects with non-medoid objects. There are 𝑘 (𝑛 − 𝑘)
candidate swaps.

PAM Complexity: It usually takes O
(
𝑛2𝑑

)
time complexity, where 𝑛 is the number of points and 𝑑 is the cost

for computing a distance measure, and O
(
𝑛2) memory is required for storing the dissimilarity matrix [27].

3.2.3 DBSCAN. DBSCAN was originally proposed in [10]. According to [20] and [10], DBSCAN is a density-based
clustering algorithm that clusters dense regions of 𝑑-dimensional points and detects outliers. The neighborhood
around each point in a cluster must contain a minimum number of points to be included in the cluster; that is,
a point is only clustered if the number of points in its neighborhood exceeds some threshold. Furthermore, the
distance function 𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑦 𝑗 ) used (for example, Euclidean distance or Manhattan distance), will determine the
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shape of the neighborhoods: circles using the Euclidean distance and squares using Manhattan distance, for example.
Points that do not have a dense-enough neighborhood are considered to be outliers.
Parameters: the parameters of DBSCAN are:
• 𝜖 : the maximum distance (with respect to the chosen distance function) required for a point 𝑞 to be considered
in the neighborhood of a point 𝑝

• 𝑀𝑖𝑛𝑃𝑡𝑠 : the minimum number of points in the neighborhood of a point 𝑝 to consider 𝑝 to be part of a cluster.
Let 𝐷 denote the dataset of objects/points.

Definition 12. 𝜖-neighborhood

The 𝜖-neighborhood 𝑁𝜖 (𝑜) denotes ∀𝑜 ′ ∈ 𝐷,𝑜≠𝑜 ′ that have dist (𝑜, 𝑜 ′) ≤ 𝜖 , where 𝑑𝑖𝑠𝑡 (·, ·) is the chosen distance
function.

Definition 13. Core objects

An object 𝑜 is a core-object with respect to 𝜖 and𝑀𝑖𝑛𝑃𝑡𝑠 in 𝐷 , if |𝑁𝜖 (𝑜) | ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 .

Definition 14. Directly Density-reachable

An object 𝑝 is directly density-reachable from an object 𝑜 with respect to 𝜖 and𝑀𝑖𝑛𝑃𝑡𝑠 in 𝐷 , if 𝑜 is a core-object
and 𝑝∈𝑁𝜖 (𝑜).
Definition 15. Density-reachable

An object 𝑝 is density-reachable from an object 𝑜 with respect to 𝜖 and 𝑀𝑖𝑛𝑃𝑡𝑠 in 𝐷 , if there exists a chain of
objects 𝑝1, 𝑝2, ..., 𝑝𝑛 such that 𝑝1 = 𝑜 and 𝑝𝑛 = 𝑝 , where 𝑝𝑖∈𝐷 and 𝑝𝑖 is directly density-reachable to 𝑝𝑖+1 with respect
to 𝜖 and𝑀𝑖𝑛𝑃𝑡𝑠 in 𝐷 .

Definition 16. Density-connected

An object 𝑝 is density-connected to an object 𝑞 with respect to 𝜖 and𝑀𝑖𝑛𝑃𝑡𝑠 in 𝐷 , if there exists an object 𝑜 ∈ 𝐷

such that both 𝑝 and 𝑞 are density-reachable to 𝑜 with respect to 𝜖 and𝑀𝑖𝑛𝑃𝑡𝑠 in 𝐷 .
Algorithm: DBSCAN begins to assign points to the first cluster 𝑐𝑖 . It iterates through the 𝑛 points 𝑝 ∈ 𝐷 , checking

whether 𝑝 is a core-object. If 𝑝 is not a core-object then it is flagged as noise. Otherwise, 𝑝 is a core-object and is
assigned to cluster 𝑐𝑖 , and all points 𝑝 ′ ∈ 𝑁𝜖 (𝑝) are recursively processed in the same fashion. Once the 𝜖-neighbors
of core-objects have all been processed, all the points in the currently processed dense region will have been either
labeled as noise or assigned to the cluster 𝑐𝑖 . The next cluster 𝑐𝑖+1 is then created and DBSCAN applies the same
logic for the next unprocessed point 𝑝 ∈ 𝐷 (the next point that has not been labeled as noise nor assigned to a
cluster). Once all points in 𝐷 have been labeled, the algorithm ends.
Complexity: Querying a region (finding the points in a 𝑁𝜖-neighborhood) requires O(log𝑛) time complexity

when using an indexing structure, and requires O
(
𝑛2) worst case time complexity without an indexing structure.

The regions are queried for each 𝑛 point, so the average runtime is O(𝑛log𝑛) [20] when 𝜖 is chosen such that
O(log𝑛) ≡ |𝑁𝜖 (𝑝) | on average , for some point 𝑝 [28].
In terms of space requirements, if a distance matrix is used (to avoid recomputing distances) DBSCAN requires a

matrix of size 𝑛2−𝑛
2 , which is O

(
𝑛2) ; while the memory required without the distance matrix is O(𝑛) [28].

3.2.4 OPTICS. [4] extend the DBSCAN algorithm and name it OPTICS, which is a hierarchical density-based
cluster algorithm [21]. It uses the idea of having an infinite number of 𝜖𝑖 parameters that are smaller than the
generating 𝜖 to create an ordering of the dataset; that is, OPTICS does not directly cluster the data instances, but
instead creates an ordering that could be used by a clustering algorithm to create density-based clusters. OPTICS is
based on the idea that denser regions (with respect to a smaller 𝜖) are contained in less dense regions (with respect
to a larger 𝜖). This ordering consists of two pieces of information that are assigned to each point in the dataset 𝐷 ,
namely, core-distance and reachability-distance, which are defined in definition 17 and 18, respectively. Using these
distances, it is sufficient for any 𝜖 ′ smaller than the generating 𝜖 to be used by another density-based clustering
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algorithm to generate a clustering using only, the core-distance, the reachability-distance, and the rank (index of
the point) of each data point output by OPTICS.

Definition 17. core-distance

Let 𝑝 be a point from the dataset 𝐷 , let 𝜖 be a distance value and𝑀𝑖𝑛𝑃𝑡𝑠 be a natural number (both parameters
from DBSCAN discussed in section 3.2.3) and let𝑀𝑖𝑛𝑃𝑡𝑠 −𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝) be defined as the minimum 𝜖𝑖 distance such
that 𝑝 is a core-object (see definition 13); that is, taking any 𝜖 ′𝑖 < 𝜖𝑖 would result in 𝑝 not having enough points in
its 𝜖𝑖 ’-neighborhood (see definition 12) to be considered a core-object. The core-distance of 𝑝 is computed as:

Core-distance (𝑝) =
{
UNDEFINED, if |𝑁𝜖 (𝑝) | < 𝑀𝑖𝑛𝑃𝑡𝑠

𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝) , otherwise

Definition 18. Reachability distance

The reachability-distance of data point 𝑝 with respect to data point 𝑜 is defined as

reachability-distance𝜖,𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝, 𝑜) =
{
UNDEFINED, if |𝑁𝜖 (𝑜) | < 𝑀𝑖𝑛𝑃𝑡𝑠

max (𝑐𝑜𝑟𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜) , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜, 𝑝)) , otherwise

, where 𝜖 is a distance value, 𝑀𝑖𝑛𝑃𝑡𝑠 is a natural number, and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜, 𝑝) is the distance between the data
points 𝑜 and 𝑝 . In other words, the reachability-distance(𝑜, 𝑝) can be thought of as the minimum distance required
such that 𝑝 is directly-density reachable from 𝑜 , assuming 𝑜 is a core-object.
Algorithm: OPTICS is similar to DBSCAN from an algorithmic point of view. All the 𝑛 points 𝑝 ∈ 𝐷 are processed.

When 𝑝 is not a core-object, it is labeled as ‘UNDEFINED’. Otherwise, for core-object 𝑝 , the core-distance of 𝑝 is
computed and recorded. OPTICS proceeds to iterate through the points 𝑝 ′ ∈ 𝑁𝜖 (𝑝), and computes the reachability-
distance𝜖,𝑀𝑖𝑛𝑃𝑡𝑠 (𝑝, 𝑝 ′) for each 𝑝 ′. This same logic is recursively applied to all points in 𝑁𝜖 (𝑝), until all points in a
region have their core-distance and reachability-distance computed. Finally, OPTICS proceeds to processing the next
unprocessed point. The points are finally recorded/stored along with their core-distance and reachability-distances.
The authors illustrate how the dataset ordering created by OPTICS could be used to cluster the dataset using a

DBSCAN-like algorithm they call ExtractDBSCAN-clustering, which proceeds as follows: given 𝜖 ′ < 𝜖 and𝑀𝑖𝑛𝑃𝑡𝑠 ,
iterate through all the objects 𝑜 ordered by OPTICS and examines the core-distance and reachability-distance to
decide how to cluster each object 𝑜 . In other words, a density-based clustering can be achieved for any 𝜖 ′ less than
the generating 𝜖 that OPTICS used to create the ordering, without having to recalculate the neighborhood region
queries.
Complexity: The complexity is almost identical to DBSCAN, since OPTICS has an equivalent structure, where

the bottleneck in the run-time is the time taken to execute the 𝜖 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 query (see complexity part of
DBSCAN section 3.2.3).

3.3 Uncertain Data Stream Clustering Algorithms
Uncertain data stream clustering algorithms are discussed in this section.

3.3.1 FDBSCAN. [20] propose FDBSCAN, a fuzzy clustering method based on DBSCAN, which is discussed in
section 3.2.3, that clusters uncertain data using fuzzy distance measures. In FDBSCAN, instead of determining
whether an object is a core-object or not, they assign a probability that an object 𝑜 is a core-object. In the standard
DBSCAN, one could represent that 𝑜 is core-object with a ‘1’ and ‘0’ when 𝑜 is not a core-object. Therefore, assigning
a probability value of being a core-object follows this same idea, with the exception that 𝑜 can now partially be a
core-object, represented with a p-value between ‘0’ and ‘1’. In standard DBSCAN, a core-object is 100% likely to be
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a core-object, for example. Similarly, the authors also assign a probability value that an object 𝑞 is density-reachable
to an object 𝑝 .
Algorithm: Similarly to DBSCAN, FDBSCAN forms a cluster by adding density-reachable points to the cluster,

but instead the points are added to the cluster if their probability of being density reachable exceeds 1
2 . FDBSCAN

proceeds to computing the distance between the discrete probability density functions of the objects. Since objects
are represented by many instances from a data stream, it becomes impractical to compute all of these distances.
As such, FDBSCAN uses minimum bounding rectangles (MBR) over the data instances, and instead computes the
distances between MBRs.
Complexity: Without any index structure over the regions when querying 𝜖-neighborhoods, FDBSCAN requires

O(𝑛) range scans, and requires between O
(
𝑛2) and O(

𝑠2𝑛2) distances computations for 𝑑-dimensional data instances,
where 𝑛 is the number of objects and 𝑠 is the sampling rate (number of data instances) for the objects. When the
objects are not too fuzzy, FDBSCAN requires O

(
𝑛2) distance calculations. When using an indexing structure, the

number of distance calculations can be reduced to O(𝑛log𝑛), which is the same complexity as DBSCAN.

3.3.2 FOPTICS. FOPTICS is proposed by [21], and it uses fuzzy distance measures to measure similarity between
objects (as opposed to using standard distance measures, for example, Euclidean distance), and it is an improvement
of the OPTICS algorithm. The objects in FOPTICS can be treated as discrete probability density functions (pdf) or
continuous pdf. In the case where the objects are treated as continuous pdf, an object 𝑥 is represented as a set of 𝑠
samples {𝑥1, 𝑥2, ..., 𝑥𝑠 }.
Complexity: O(𝑛) range scans are required, and O

(
𝑠𝑛2) distance computations on 𝑑-dimensional points are

required, where 𝑠 is the sample rate used and 𝑛 is the number of data points in the dataset.

3.3.3 Uncertain K-Medoids. [14] present uncertain k-medoids for clustering uncertain data using the KL-divergence,
which has complexity 𝑂((𝑘 + 𝑟 )𝑛2𝐸), where 𝑟 is the number of swapping phase iterations, 𝐸 is the cost to compare
two objects using KL-divergence, 𝑛 is the number of objects, and 𝑘 is the number of medoids. The authors also
present a randomized uncertain k-medoids to reduce this complexity using approximations, which reduces the
complexity to 𝑂(𝑟𝑛𝐸) complexity.

3.3.4 Uncertain DBSCAN. [14] propose uncertain DBSCAN, where the KL-divergence is used to decide whether
objects are in a dense region. The complexity uncertain DBSCAN is 𝑂(𝑛2𝐸), where 𝑛 is the number of uncertain
objects and 𝐸 is the cost to compute the KL-divergence between two objects.

3.3.5 UK-Means. According to [24], Uncertain k-means (UK-means) is similar to k-means, but instead of using the
Euclidean distance to measure the distance between an object and the cluster’s center, the expected distance is used
[6]; that is, an object 𝑜𝑖 that has the shortest expected distance to 𝑐𝑖 ’s representative point 𝑝𝑐𝑖 will be assigned to a
cluster 𝑐𝑖 . To compute the expected distance between 𝑜𝑖 and 𝑝𝑐𝑖 , ED(𝑜𝑖 , 𝑝𝑐𝑖 ), the integral

∫
𝑓𝑖 (𝑥) 𝑑

(
𝑥, 𝑝𝑐𝑖

)
𝑑𝑥 will

need to be calculated. In other words, we want to:

minimize
𝑛∑
𝑖=1

(∫
𝑓𝑖 (𝑥) 𝑑

(
𝑥, 𝑝𝑐𝑖

)
𝑑𝑥

)
, where 𝑛 is the number of objects of𝑚-dimensional space, 𝑥 is an uncertain data sample of object 𝑜𝑖 , 𝑓𝑖 is the pdf

of the data sample 𝑥 under the uncertainty region of 𝑜𝑖 , and 𝑑 (𝑥,𝑦) is a distance metric measuring the distance
between points 𝑥 and 𝑦.
Complexity: 𝑛𝑘𝑡 expected distance calculations, where 𝑘 is the number of clusters, and 𝑡 is the number of

iterations before convergence. Note that a expected distance calculation (ED(𝑜𝑖 , 𝑝𝑐𝑖 )) requires more computations
than basic distance computations (𝑑 (𝑥, 𝑝𝑐𝑖 )); that is, the integral is approximated by summing the distance from 𝑝𝑐𝑖
to all sample points, where the distance is weighted by the point’s probability density.
The authors propose four possible improvements to UK-means:
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• Improvement𝑈𝑝𝑟𝑒 : the authors attempt to improve the efficiency of UK-means by usingmin-max distance
pruning to reduce unnecessary expected distance computations. A MBR is placed around the region of some
𝑜𝑖 , such that the probability that a data instance of 𝑜𝑖 is outside the MBR is approximately 0. An upper bound
and lower bound are placed on the expected distance from some 𝑜𝑖 to a cluster representative 𝑝 𝑗 by computing
the minimum distance𝑀𝐼𝑁𝑖 𝑗 and maximum distance𝑀𝐴𝑋𝑖 𝑗 from 𝑝 𝑗 to the MBR of 𝑜𝑖 . Using this notion, some
expected distance computations can be ignored. A min-max distance 𝑑𝑖 is defined as the minimum 𝑀𝐴𝑋𝑖 𝑗 .
Using 𝑑𝑖 , it can be shown that any 𝑝 𝑗 with 𝑀𝐼𝑁𝑖 𝑗 > 𝑑𝑖 cannot be the cluster representative of 𝑜𝑖 with the
smallest distance, which means such expected distance computations can be ignored. This pruning technique
suffers from poor expected distance estimations when the MBR of an 𝑜𝑖 is large. The authors address this
estimation inaccuracy by creating tighter bounds, by using pre-computations with the help of the triangle
inequality (see expression d) in definition 2). An upper bound can be placed on ED(𝑜𝑖 , 𝑝 𝑗 ) as follows:

ED(𝑜𝑖 , 𝑝 𝑗 ) ≤ ED(𝑜𝑖 , 𝑦) + 𝑑 (𝑦, 𝑝 𝑗 )
, where𝑦 is an anchor point, which is some chosen point to use in the triangle inequality. As such, if ED(𝑜𝑖 , 𝑦) is
pre-computed, computing an upper bound on ED(𝑜𝑖 , 𝑝 𝑗 ) only requires a distance computation d(𝑦, 𝑝 𝑗 ) instead
of a inefficient expected distance computation. The authors call this the𝑈pre method, which they apply to the
min-max distance method by comparing𝑀𝐴𝑋𝑖 𝑗 to𝑈pre, and choosing the smallest. Note that the upper bound
on ED(𝑜𝑖 , 𝑝 𝑗 ) will be the same as the min-max distance method or better.

• Improvement 𝐿𝑝𝑟𝑒 : similarly, they apply the same logic for lower bounds on ED(𝑜𝑖 , 𝑝 𝑗 ) using the inequality
below:

ED(𝑜𝑖 , 𝑝 𝑗 ) ≥ |𝑑 (𝑦, 𝑝 𝑗 ) − ED(𝑜𝑖 , 𝑦) |. (10)

, where ED(𝑜𝑖 , 𝑦) can be pre-computed. They call this lower bound 𝐿𝑝𝑟𝑒 . Incorporating 𝐿𝑝𝑟𝑒 into the min-max
distance method can be done by comparing 𝐿𝑝𝑟𝑒 to𝑀𝐼𝑁𝑖 𝑗 and choosing the largest among the two. The lower
bounds are equal to or better than the lower bounds produced by the min-max distance method. The 𝑦 that
minimizes ED(𝑜𝑖 , 𝑦) must be chosen wisely, since this improvement only works when more than 𝑛𝑟 expected
distances are pruned, where 𝑛 is the number of objects and 𝑟 is the number of anchor points used, since there
are 𝑛𝑟 pre-computed expected distances performed in min-max distance optimization. Therefore, 𝑦 must be
chosen wisely to minimize ED(𝑜𝑖 , 𝑦) to increase the number of pruned expected distance computations. Such a
𝑦 is found inside the MBR of 𝑜𝑖 , which is proven by the authors. It is also the case that choosing such 𝑦 ∈ MBR
is ideal for 𝐿𝑝𝑟𝑒 , since it minimizes ED(𝑜𝑖 , 𝑦) and maximizes 𝑑 (𝑦, 𝑝 𝑗 ), which maximizes ED(𝑜𝑖 , 𝑝 𝑗 ) (see equation
10). It is not trivial to pick an appropriate 𝑦 ∈ MBR of 𝑜𝑖 . A scheme could be used where 𝑦 is picked as the
center of MBR, picked from the points on edges of MBR, or picked from points on edges and corners of MBR.

• Improvement 𝑈𝑐𝑠 : the authors also propose a method for avoiding pre-computations and automatically
choosing 𝑦 based on previous iterations of UK-means, which uses the idea that the cluster representative 𝑝 𝑗

will be similar to the representative in the next iteration 𝑝 𝑗 ’. By examining the inequality below:

ED(𝑜𝑖 , 𝑝 ′
𝑗 ) ≤ ED(𝑜𝑖 , 𝑝 𝑗 ) + 𝑑 (𝑝 𝑗 , 𝑝

′
𝑗 ) (11)

, it can be seen that choosing 𝑦 = 𝑝 𝑗 should be a reasonable choice for the next iteration, since we want to
minimize 𝑑 (𝑝 𝑗 , 𝑝

′
𝑗 ), and in k-means, cluster centroids tend to be similar in-between consecutive iterations.

The authors call this method𝑈𝑐𝑠 , for upper bound estimation based on cluster shift.
• Improvement 𝐿𝑐𝑠 : similarly, for the lower bound, the inequality is shown below:

ED(𝑜𝑖 , 𝑝 ′
𝑗 ) ≥ |ED(𝑜𝑖 , 𝑝 𝑗 ) − 𝑑 (𝑝 𝑗 , 𝑝

′
𝑗 ) | (12)
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, which is denoted as the 𝐿𝑐𝑠 method. It is clear that minimizing 𝑑 (𝑝 𝑗 , 𝑝
′
𝑗 ) will maximize the lower bound.

To summarize, the 𝑈𝑝𝑟𝑒 , 𝑈𝑐𝑠 , 𝐿𝑝𝑟𝑒 , and 𝐿𝑐𝑠 improvements can be used interchangeably for pruning expected
distance calculations in UK-means using min-max distance method.
In their experiments, the authors use 𝑘 , the number of clusters, as the baseline, since the brute-force approach to

performing UK-means will compare expected distances of all objects to 𝑘 clusters. The author’s goal was to show
that their improvements executed fewer expected distance calculations compared to the baseline. In their results,
they were able to prune 97% of expected distance calculations.

3.3.6 UESStream Clustering Algorithm. [6] propose UESStream, a clustering algorithm for uncertain data streams.
They propose EU-sketch (discussed in section 3.1.5) to summarize uncertain data streams. By using the sketch
*-metric (discussed in section 3.1.3) and the KL-divergence (discussed in section 2.2.2) as the stream comparison
measure, the authors define a measure that may be treated as a distance measure when comparing two uncertain
data streams. The streams are represented using EU-sketch structures. Note that the authors did not discuss the
complexity of their proposed UESStream clustering algorithm.
Algorithm: The UESStream algorithm proceeds as follows:
(1) Represent every object using an EU-sketch structure by storing the probability of data instances in the sliding

windows.
(2) Partition the objects into coresets (discussed in section 2.4), and choose a representative object for each coreset.

To address outliers, local distance-based outlier scores are used to prevent outlier objects from representing a
coreset, by replacing the outlier representatives with a more appropriate representative object.

(3) Choose initial cluster centers using max-min distances.
(4) As uncertain data instances arrive, assign the instances to the nearest cluster, and re-calculate the cluster

centers.

4 EXERCISES AND SOLUTIONS
This section contains a variety of questions and answers related to the concepts and algorithms found in the present
work. This section is separated into two parts: section 4.1 has exercises for the reader, and these exercises are
organized by algorithm; and section 4.2 has the answers to these exercises.

4.1 Exercises
4.1.1 K-means.

Exercise 1. What is the time complexity of k-means?

Exercise 2. Is the k-means algorithm a distance/center-based or density-based clustering algorithm?

4.1.2 K-medoids.

Exercise 3. What is the time complexity of solving the k-medoids problem using the PAM algorithm?

Exercise 4. What is the space complexity of solving the k-medoids problem using the PAM algorithm?

4.1.3 DBSCAN.

Exercise 5. What is the average time complexity of the DBSCAN algorithm when 𝜖 is chosen appropriately and an
indexing structure is used over the regions when querying 𝜖-neighborhoods?
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Exercise 6. What is the worst-case time complexity of the DBSCAN algorithm without using an indexing structure
over the regions when querying 𝜖-neighborhoods?

Exercise 7. What is the space complexity of the DBSCAN algorithm if a distance matrix is used?

Exercise 8. What is the space complexity of the DBSCAN algorithm without using a distance matrix?

Exercise 9. What is the advantage of using a distance matrix in the the DBSCAN algorithm algorithm?

Exercise 10. Is the DBSCAN algorithm a distance/center-based or density-based clustering algorithm?

4.1.4 FDBSCAN.

Exercise 11. What is the time complexity of the FDBSCAN algorithm if the objects are very fuzzy and an indexing
structure is used on the regions when querying 𝜖-neighborhoods?

Exercise 12. What is the time complexity of the FDBSCAN algorithm if the objects are not very fuzzy?

4.1.5 Uncertain K-medoids.

Exercise 13. What is the time complexity of the Uncertain K-medoids algorithm without using randomization?

Exercise 14. What is the time complexity of the Uncertain K-medoids algorithm when randomization is used?

4.1.6 Uncertain DBSCAN.

Exercise 15. What is the time complexity of the Uncertain DBSCAN algorithm?

4.1.7 UK-means.

Exercise 16. What is the time complexity of the UK-means algorithm in terms of number of expected distance
computations?

4.1.8 Exponential Histograms.

Exercise 17. What is the space complexity of exponential histograms?

Exercise 18. What is the amortized (usual) time complexity for updates of exponential histograms?

Exercise 19. What is the worst-case time complexity for updates of exponential histograms?

Exercise 20. What is the time complexity for querying an entire sliding window of an exponential histogram?

Exercise 21. What is the time complexity for querying a subset of a sliding window of an exponential histogram
using a linear search?

Exercise 22. What is the time complexity for querying a subset of a sliding window of an exponential histogram
using a binary search?
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4.1.9 ECM-sketch. Assume exponential histograms are used to implement the sliding windows of ECM-sketch.

Exercise 23. What is the space complexity of the ECM-sketch structure?

Exercise 24. What is the amortized (usual) time complexity of updating the ECM-sketch structure?

Exercise 25. What is the worst-case time complexity for updating the ECM-sketch structure?

Exercise 26. What is the time complexity for querying the ECM-sketch structure?

4.1.10 FOPTICS.

Exercise 27. What is the time complexity for range scans of FOPTICS?

Exercise 28. What is the time complexity for distance computations of FOPTICS?

4.2 Solutions
4.2.1 K-means.

Answer 1. O
(
𝑛2)

Answer 2. center-based

4.2.2 K-medoids.

Answer 3. O
(
𝑛2𝑑

)
Answer 4. O

(
𝑛2)

4.2.3 DBSCAN.

Answer 5. O(𝑛log𝑛)

Answer 6. O
(
𝑛2)

Answer 7. 𝑛2−𝑛
2 ≡ O

(
𝑛2)

Answer 8. O(𝑛)

Answer 9. At the cost of more memory being used, fewer distance computations are performed.

Answer 10. density-based

4.2.4 FDBSCAN.

Answer 11. O(𝑛log𝑛)

Answer 12. O
(
𝑛2)
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4.2.5 Uncertain K-medoids.

Answer 13. O
(
(𝑘 + 𝑟 ) 𝑛2𝐸

)
Answer 14. O(𝑟𝑛𝐸)

4.2.6 Uncertain DBSCAN.

Answer 15. O
(
𝑛2𝐸

)
4.2.7 UK-means.

Answer 16. O(𝑛𝑘𝑡)

4.2.8 Exponential Histograms.

Answer 17. O
(
log2 (𝑔 (𝑁, 𝑆)) /𝜖

)
Answer 18. O(1)

Answer 19. O(log (𝑢 (𝑁, 𝑆)))

Answer 20. O(1)

Answer 21. O(log (𝑈 (𝑁, 𝑆)) /𝜖)

Answer 22. O(log (log (𝑈 (𝑁, 𝑆)) /𝜖))

4.2.9 ECM-sketch.

Answer 23. O
( 1
𝜖
ln

( 1
𝛿

)
ln2 (𝑔 (𝑁, 𝑆))

)
Answer 24. O

(
ln

( 1
𝛿

) )
Answer 25. O

(
ln

( 1
𝛿

)
ln (𝑢 (𝑁, 𝑆))

)
Answer 26. O

(
ln

( 1
𝛿

)
ln (𝑢 (𝑁, 𝑆)) /

√
𝜖
)

4.2.10 FOPTICS.

Answer 27. O(𝑛)

Answer 28. O
(
𝑠𝑛2)
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5 CONCLUSION
The present work discusses some background on data stream processing and clustering. Many applications can make
use of mining data streams. These applications include stock market analysis, weather predictions, social media
analysis, sensor networks, and intrusion detection systems. However, there are things that must be considered,
namely, a) modern stream processing algorithms are struggling to keep up with the increasing volume and speed of
distributed data streams, b) a forgetting mechanism (time-decay model) must be used to address the dimension of
time, and c) the data sources may be noisy and inaccurate. Uncertain data stream processing algorithms can be
used to process these types of fuzzy/noisy data streams, which address the uncertainty of the data in an efficient
manner. Furthermore, the present work also explores different types of data mining algorithms, and presents their
complexity and other important details. The types of algorithms discussed in the present work are:

a) Data stream processing algorithms, including exponential histograms [9], count-min sketch [8], sketch
*-metric [3], ECM-sketch [26], and EU-sketch [6].

b) Clustering algorithms, including k-means [17][15], k-medoids [14][27], DBSCAN [10], and OPTICS [4].
c) Uncertain data stream clustering algorithms, including FDBSCAN [20], FOPTICS [21], UK-medoids [14],

uncertain DBSCAN [14], and UESStream [6].

Due to time constraints, a few parts of the present work are lacking in detail. As such, future work may involve:

• Adding additional details to:
– the FOPTICS, UK-medoids, and uncertain DBSCAN algorithm sections (section 3.3.2, 4.1.5, and 4.1.6, respec-
tively). Only a short summary and the complexity of these algorithms are presented.

– the ExtractDBSCAN-clustering algorithm proposed by [4] in section 3.2.4.
– the section on fuzzy clustering (section 2.5.1), since only a brief summary is presented .
– the complexity analysis of count-min sketch in section 3.1.2.

• Exploring and presenting more details on data stream clustering.
• Adding pseudo code to all the data mining algorithms discussed in the present work .
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