
Twitter Sentiment Analysis using Fuzzy Integral Classifier
Fusion

Patrick Killeen
pkill013@uottawa.ca
University of Ottawa
Ottawa, Ontario

ABSTRACT
Social media websites are becoming increasingly popular. Among
these websites is Twitter, an important micro-blogging service for
data science, since it offers an API to make its user data easily
available, and has more than 500 million messages (tweets) that
are created each day. Data mining these tweets can result in in-
teresting findings. By analyzing these messages for their polarity
(their sentiment), many applications can benefit from the knowl-
edge discovered. These applications include the following: business
intelligence, stock market analysis, and political election statistics.
However, it is difficult to analyze all these tweets due to several
reasons: their limited character length, the large number of tweets,
the speed at which tweets are created, and the unstructured na-
ture of tweets. It is not feasible to manually verify the opinions by
analyzing this massive amount of Twitter data.

The solution to address these challenges is to apply sentiment
analysis to this Twitter data. Sentiment analysis is an automated
solution for discovering the polarity (negative, neutral, or positive)
of textual messages. There are several approaches in the literature
that propose a method to address Twitter sentiment analysis, and
this includes the following approaches: supervised machine learn-
ing, semi-supervised machine learning, lexicon-based, and hybrid;
among these approaches is a work that uses a data fusion-based
approach (they use a fuzzy integral classifier) and also proposes a
natural language processing (NLP)-based approach. Their fusion
model combines multiple simple models (including their proposed
NLP-based method) to create a more robust complex model.

The present work recreates their data fusion approach, NLP-
based method, and some of their experiments, which include using
a dataset they used in their experiments (the Stanford dataset) and
also datasets they did not use; namely, Airline and Dataset3 datasets.
The present work uses the following classifiers: Maximum Entropy,
Naive Bayes, Support Vector Machine (SVM), NLP-based approach,
and the Fusion model. Experimental results reveal that: a) classifier
diversity indeed has an effect on the performance of the Fusion
model; that is, the Fusion model will not necessarily perform as
well as its best performing classifier; b) the presence of emoticons
and their effects on performance is inconclusive; c) the presence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
University of Ottawa ’20, April 26, 2020, Ottawa, ON
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of symbols and stopwords can have an effect on performance, and
stopwords may have some form of sentimental value; d) when the
Airline dataset is used to train the classifiers, the average classifier
performance is lower compared to the average classifier perfor-
mance when using the Dataset3 or Stanford dataset; and e) some
of the results from the literature were reproduced, specifically the
accuracy of the SVM and NLP-based approaches.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Unsupervised learning; Cross-validation; Support
vectormachines; Statistical relational learning;Machine learn-
ing approaches.

KEYWORDS
Choquet integral, classifier fusion, data fusion, fuzzy integral, po-
larity classification, sentiment analysis, text classification, twitter

ACM Reference Format:
Patrick Killeen. 2020. Twitter Sentiment Analysis using Fuzzy Integral Clas-
sifier Fusion. In Proceedings of Ottawa ’20: University of Ottawa COMP5118
Course Paper (University of Ottawa ’20). ACM, New York, NY, USA, 25 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Social media platforms are becoming increasingly popular, and
among them the most popular are Google+, Facebook, and Twitter
[9][5]. As a result, given the large number of users that use these
platforms, a lot of data are being created in the form of posts and
messages, which provides data mining opportunities.

1.1 Twitter
One of the important social media sites is Twitter. Twitter is a
micro-blogging social media platform [36][32][6][9][43] that allows
users to send small messages to each other. By storing all its users’
messages, Twitter can offer an API to data analysts and developers
to allow them to easily access data by querying recent messages or
messages of a target topic [12]. These messages include reviews and
other opinions about a variety of subjects (for example, companies,
products, political views, and economics [9]). The messages are
limited to 280 [42] (or more recently 140 [6][36]) characters in
length. Messages in Twitter are referred to as ‘tweets’ and often
contain emoticons, which are used to indicate the mood of the tweet.
An emoticon is usually created using a series of punctuations (for
example, ‘:)’). Users can also refer to each other using the ‘@
symbol in combination with a user name [12]. The ‘#’ symbol is
used to explicitly specify the topic of the tweet, which allows many
users to see it and aggregate that tweet [20].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

1.2 Sentiment Analysis
It is important for some companies to examine the general opinion
about their product (or service) [9][11][42][32][36], since they can
adjust their business plan and/or goals to improve their clients’ ex-
perience. For example, a company can adjust their business model to
cater to individual clients’ needs [25]. Another example is a product
recommendation system that aggregates product opinions and rec-
ommends the most popular products to customers [25], which can
help customers’ purchasing experience [41]. The naive approach
to examining all these opinions would be manually verifying each
user’s opinion and having a human summarize the general opinion
found in the tweets. However, it is not trivial to manually analyze
all these tweets for scalability reasons [9]; more than 500 million
tweets are created every day [11][32][36].

Therefore, an automated approach is required, namely, senti-
ment analysis [20][9]. The literature has various synonyms for
sentiment analysis, which include opinion mining, emotion clas-
sification, subjectivity analysis, appraisal extraction, and polarity
classification [25][9]. In this paper the term sentiment analysis (SA)
will be used. SA is a form of natural language processing [41][9].
Generally speaking, SA involves an automated solution that predicts
the polarity (sentiment) of textual data (either positive, negative,
and/or neutral) [32][9]. In addition to business intelligence, appli-
cations of SA include discovering facts about stock markets and
elections [5]. SA systems can even be applied in real-time (or near
real-time), which would not be possible if manual approaches were
taken [32]. Therefore, designing software tools to automatically
determine the sentiment of a tweet is important.

1.3 Contributions
The present work makes the following contributions: a) it recreates
some of thework and experiments done in [9] and [12] (note that the
work done in [9] is summarized in section 2.3), using the following
TSA datasets (see section 5.4 for more details): 1) Airline [3], 2)
Dataset3 [2], and 3) Stanford Twitter Sentiment [12]); b) it provides
a literature review on TSA; c) it performs experiments to analyze the
effects of emoticons, stopwords, and symbols on TSA performance;
d) it performs experiments to analyze classifier prediction diversity
and the effects on the Fusion model’s performance; e) it provides a
thorough analysis of the results from the TSA experiments; and f) it
provides detailed examples for using the Stanford CoreNLP library
from the command line, and a list of helpful online resources that
enables TSA using the Stanford CoreNLP library.

1.4 Paper Overview
This paper is organized as follows: section 2.1 explains the chal-
lenges involved when performing Twitter sentiment analysis, sec-
tion 2.2 goes into detail about the state of the art of the literature
on Twitter sentiment analysis, section 2.3 summarizes the work
done in [9], section 3 presents the methodology used to perform
Twitter sentiment analysis, which includes the steps involved in
performing tweet normalization and details on the involved ma-
chine learning classifiers, section 4 presents the Twitter sentiment
analysis implementation details, which includes the libraries used
and the classifiers’ implementation details, section 5 provides the

results and analytical findings of the Twitter sentiment analysis ex-
periments conducted in the present work, and section 6 concludes
the paper.

This paper also includes two appendices: Appendix A, which
provides examples on how to use the Stanford CoreNLP library’s
command line API, and Appendix B, which provides useful online
resources that helped the present work with the implementation
process.

2 BACKGROUND
2.1 Challenges
There are challenges involved when performing Twitter sentiment
analysis (TSA). According to [5], one of the challenges is obtain-
ing labeled data [36]. Since the polarity of a tweet is arguably
subjective, humans are usually involved with manually labeling
Twitter data when a machine learning model needs to be evalu-
ated. This is known as the label sparsity problem. This problem
can be addressed by querying SA websites to label tweets [34] and
by performing crowd sourcing, which involves paying humans to
manually label datasets. However, these solutions do not address
all challenges; that is, according to [6] and [36], performing TSA
is more difficult than standard SA because of the variety of do-
mains in Twitter datasets [41]. In other words, the popularity of
Twitter is responsible for the variety of topics discussed in tweets
(for example, cooking, video games, politics, marketing, etc.), while
other social media platforms (such as a product review website,
for example) only focus on a specific topic. Not only does Twitter
data have a vast array of domains, this large amount of Twitter
data also: a) is increasing in size, b) is imprecise, and c) has many
different subjects; additionally, the general vagueness of tweets also
makes it difficult to determine the overall sentiment and average
insight about subjects found in tweets [28]. This means a trained
model may under-perform when used on Twitter data from a dif-
ferent domain (for example, sports-related tweets) compared with
its training data (for example, movie-related tweets). This is known
as the sentiment drift problem. This challenge is further compli-
cated by the presence of multiple cultural sublanguages that are
found in tweet datasets; that is, the same word may have different
sentimental meanings depending on the cultural context/domain.
For example, reviews for a specific type of product (a keyboard, for
example) may have different terms and slang used to express the
same opinion for sports reviews. Some approaches in the literature
attempt to address this by gathering tweets from a target event
and manually labelling them. The assumption in this approach is
that an event will have tweets that share a common sublanguage
(a gaming convention, for example). The limitation of this method
is that the classifiers may be poorly trained due to lack of training
data, and labeled data is generally difficult to obtain. To address the
inaccuracies of this method, external data from the same event can
be merged with the Twitter data. For example, distant supervision
can be used to address the label sparsity and sentiment drift prob-
lems, which involves automatically labeling unlabeled tweets [5].
An approach proposed by [5] attempts to address the label sparsity
challenge by building an opinion lexicon and creating synthetically
labeled tweet data. According to [34], approaches that use lexicons
do not need training data; however, it is difficult to use lexicons

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

(and other types of approaches [19]) for TSA due to the unstruc-
tured grammar and limited length of tweets. The tweet length
limit is responsible for encouraging slang, domain-dependent slang,
acronyms, and other unstructured grammar that appear in tweets
[19][6]. As a result there is also a general lack of opinion words
(words that represent a negative or positive message for a specific
domain [5]) or other textual mood indicators/elements found in
tweets, which make it challenging to determine a tweet’s polarity
[18][6]. This type of challenge is unique to TSA, since standard SA
approaches typically deal with larger text corpuses that have a bet-
ter grammatical structure [41]. Another unique challenge to TSA,
according to [6], is that tweets tend to mostly have neutral polarity
(that is, the class ratios are skewed[18]), while other types of SA
datasets (such as those from review websites, for example) tend
to mostly contain positive and negative messages. Moreover, the
unstructured nature of the grammar found in tweets is challenging
for feature selection due to the sparsity of the vocabulary used in
tweet messages. When tweets are converted into feature vectors,
these vectors may be sparse, which hinders the accuracy of SA
models [11][36]. That is, feature selection is another challenge
for TSA [6][9]. Furthermore, some other challenges include the
following:

• The real-time nature of Twitter data; to analyze tweets in
real-time is not a trivial task [32].

• The sensitivity of the classifiers to the data. Some classi-
fiers will learn differently than others when using the same
training data. A strategy to deal with this problem is to com-
bine classifiers together, which is called a fusion model.

• Dealing with tweets that have multiple subjects, since
there could be two different polarities for a single tweet
(one polarity for each subject).

2.2 Literature Review
According to [9], the first to perform SA on microblogs was [12].
The uniqueness of performing SA onmicroblogs is typically that the
messages are short, have many grammar mistakes, include irony,
and also have a vocabulary that depends on the subject/domain
of the message (for example, video gamers may have different
vocabularies than sports fans). As a result, standard SA techniques
may not be directly applied to microblog messages. [4] state that
typically the steps involved when performing SA are as follows:

(1) Feature extraction and isolating the text components that are
necessary for SA [7][5], where each attribute of the vector
represents a feature of the tweet; for example, the frequency
of a word or a combination of words (n-grams)[5]

(2) Making a prediction and classifying text (for example, as
either positive, negative, or neutral)

(3) Visualizing the aggregated opinion results
(4) Automatic opinion mining.

A literature review of [11], [36], and [41] reveals that strategies
used to perform TSA include: supervised machine learning, semi-
supervised machine learning, dictionary-based methods, sentiment
lexicons, and hybrid approaches. According to [7], common classi-
fiers for TSA include Support Vector Machines (SVM), Naive Bayes
(NB), and Maximum Entropy.

[28] and [25] provide a good literature review and survey on the
topic of TSA, respectively. [11] propose TSAwork that uses five sen-
timent classes instead of the standard three (positive, neutral, and
negative), stating that having middle-positive and middle-negative
classes can help brand management practitioners. They also ad-
dress the sentiment drift problem by applying a TSA model to a
variety of domains. [7] propose an Ensemble model approach that
combines SVM with Adaboost to address the issue of unbalanced
labels in datasets. [41] propose a hybrid model that is based on
domain-oriented lexicons to address the challenge of multiple do-
mains in Twitter data. Opinion lexicons, which use opinion words,
can also be used to perform TSA [5]. [19] propose a supervised
learning approach that creates new features by analyzing the re-
lationship between the frequency of positive and negative tweets.
[6] investigate the effects on TSA when using bag-of-word fea-
ture extraction, feature hashing, and classifier ensembles. [32] do a
case study of applying TSA to monitor the opinions of customers
who travel to Las Vegas. According to [36], the lack of labeled data
can be addressed using semi-supervised machine learning, and
they also provide a survey that analyzes various strategies that can
be used to perform TSA when labeled data is limited. [43] study
the relationship of emoticons and TSA. They find that common
emoticons can indeed be beneficial to the accuracy of TSA models;
however, the rarer emoticons should be treated with caution, since
they may confuse the models. [8] provide a good survey on TSA
that covers the details and techniques used in TSA, which includes
gathering the Twitter data, machine learning (ML) models used
to perform TSA, and the strategies used to evaluate these models.
According to [20], the n-gram modeling technique can be used for
feature extraction on Twitter data. To deal with slang words and
the unstructured nature of tweets, Handling Polysemy can be used.
It involves replacing slang words with their non-slang synonyms
by using a dictionary and expanding acronyms to their full words.
They also propose an approach that is based on improving the SVM
by using the K-nearest neighbors (KNN) algorithm. [4] propose an
Internet of Things (IoT)-based TSA system using a Raspberry Pi, a
smart mirror, and a NB classifier. [21] propose an approach using a
model based on SVM and KNN, and they only consider including a
limited number of features such as: n-gram feature, pattern feature,
punctuation feature, keyword-based feature, and word feature. [11]
addresses the feature selection challenge by using an approach that
uses neural networks and SVM. [42] propose an approach based
on concept bagging to perform TSA that focuses on reducing the
number of features included in their model. Too many features will
lead to inaccurate results. [18] propose an ensemble framework for
TSA. [34] propose a TSA system called SentiCircles, which is lexicon-
based and considers both the entity-level (words) and tweet-level
polarity (typically TSA approaches are tweet-level). They analyze
the co-occurrences of words while processing polarity, and they
update the entity-level polarity of words dynamically.

2.3 Twitter Sentiment Analysis Using Fuzzy
Integral Classifier Fusion

This section summarizes the work done in [9]. They perform TSA
using the Choquet fuzzy integral (CFI), and their approach contains

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

both unsupervised and supervised machine learning. They pro-
pose a natural language processing (NLP)-based approach and use
data fusion to perform TSA. Data fusion involves combining many
simple models to create a more robust complex model. Examples
of fusion models include using NB and ordered weighted average
(OWA) on the classifiers, which can be improved if the weights
assigned to each classifier are dynamically determined based on the
input sample. That is, for every tweet, a fusion model would adjust
the weights to address the efficiency of each classifier for the given
tweet. It is at times beneficial for fusion models to have classifiers
contradict each other. For example, if a class is more popular than
another, when two classifiers predict different classes, then it may
be the case that the more frequent class is the correct answer. The
CFI is a strong fusion model based on classifier weighting. It consid-
ers all possible combinations of classifiers’ predictions and assigns
each combination with a weight. It has the benefit of requiring little
training data compared with other fusion models. They train their
fusion model using heuristic least mean square (HLMS) method.
Their fusion model includes the following classifiers: Maximum
Entropy (MaxEnt), NB, SVM, and their proposed NLP-based model.
They normalize tweets by following some of the steps performed
in [12]. These steps involve:

(1) Replacing addresses (for example, a URL) with a constant
(2) Removing user referencing
(3) Fixing grammar mistakes (for example, any character that

occurs more than twice is replaced with two of that same
character)

(4) Replacing certain types of words with constants (emoticons,
for example)

(5) Removing stop words
They extract features using bigrams, unigrams, a combination

of the two, and part of speech (POS) tags. Their NLP-based model
uses lexicons for TSA.

In their experiments, they use the following datasets: Stanford
Twitter Sentiment, SemEval-2016 Subtask D Two-Point Scale (Pos-
itive/Negative), Movie Dataset, and Stanford Twitter Sentiment
Corpus. They perform TSA on the SVM, NB, Maximum Entropy,
and their proposed NLP-based model. They also include these mod-
els in the following fusion models: NB, OWA, and their proposed
fusion approach that uses the CFI. Their experimental results re-
veal that their NLP-based approach does poorly compared with
the other machine learning models; however, when combined with
their fusion approach, their results are more accurate than those
of SVM, NB, and Maximum Entropy. Furthermore, their fuzzy data
fusion approach outperforms both NB and OWA fusion models.

3 METHODOLOGY
The present work follows the tweet normalization performed in
[12] and [9]. This section includes the tweet normalization process,
a detailed discussion that summarizes the work done in [9], and
presents the involved classifiers.

3.1 Tweet Normalization
Tweet normalization involves converting raw tweet data from a
dataset into an appropriately parsed format that can be used by
TSA classifiers. The steps involved in normalizing tweets are as

follows: a) replacing URIs with the constant ‘URL’; b) replacing any
user reference (for example, ‘@user123’) with ‘(USERNAME)’; c)
applying grammar corrections. This simply reduces many consec-
utive characters; for example, ‘gooooood’ would become ‘good’.
However, it is not sophisticated enough to detect spelling mistakes
after normalization; for example, the word ‘hoooot’ would be con-
verted to ‘hoot’, but the user may have meant ‘hot’; d) replacing
emoticons with the appropriate constants. Positive emoticons (‘:)’,
for example) are are replaced with ‘smile’ and negative emoticons
are replaced with ‘frown’; e) stopwords (for example, ‘the’ is a stop-
word) are removed (see section 3.1.1 for more details on stopwords);
and f) although [9] did not perform this normalization step, the
present work also optionally removes symbols. Removing sym-
bols involves removing any non-alphanumeric character from a
tweet, with the exception of ‘(’ and ‘)’, since the username template
contains parentheses.

3.1.1 Stopword Removal. Stopwords are common words that occur
frequently in data and therefore provide less analytical value to
classifiers thanwords that aremore rare; for example, theword ‘The’
may be considered a stopword. According to [33], some research
suggests that removing stopwords will hinder sentiment analysis
performance, since they argue that stopwords have sentimental
value, while other research suggests removing stopwords have
beneficial effects on the performance of sentimental analysis. They
also find that stopword removal indeed has a negative impact on
sentiment analysis results. Therefore, the present work investigated
the impact of stopwords on the performance of sentiment analysis
experiments.

3.2 Classifiers
3.2.1 Maximum Entropy. According to [12], when using the Maxi-
mum Entropy (MaxEnt) classifier, the most uniform models should
be preferred. The MaxEnt classifier also uses features like NB, but
the difference between the MaxEnt and NB classifier is that MaxEnt
does not assume conditional independence between the features
in a data instance. This relaxes the constraint on the types of fea-
tures that can be added (bigrams can be added, for example). The
equation below represents the model:

𝑃𝑀𝐸 (𝑐 |𝑑, 𝜆) =
exp[Σ𝑖𝜆𝑖 𝑓𝑖 (𝑐,𝑑)]

Σ𝑐′exp[Σ𝑖𝜆𝑖 𝑓𝑖 (𝑐,𝑑)] (1)

, where 𝑐 represents the class (sentiment) of the tweet 𝑑 , and 𝜆
is a weight vector.

3.2.2 Naive Bayes. A literature review of [12] and [24] reveals
that Naive Bayes (NB) is a probability-based classifier that relies
on the frequency of the features from a dataset, and it assumes
conditional independence between the features in a data instance.
The sentiment (class) 𝑐∗ of a tweet 𝑑 can be predicted as follows:

𝑐∗ = argmax𝑐 (𝑃𝑁𝐵 (𝑐 |𝑑))

𝑃𝑁𝐵 (𝑐 |𝑑) =
(𝑃 (𝑐)

𝑚∑
𝑖=1

𝑃 (𝑓 |𝑐)𝑛𝑖 (𝑑))

𝑃 (𝑑)

(2)

, where 𝑓 is a feature, 𝑛𝑖 (𝑑) represents the number of times
feature 𝑓𝑖 is contained in tweet 𝑑 , and𝑚 is the number of features.

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

3.2.3 Support Vector Machine. The Support Vector Machine (SVM)
classifier is non-probabilistic and is based on vectors by trying to
find a vector that best splits the training data into two different
categories to separate the classes from each other [44]. According
to [12], it is a popular classifier. [12] use the presence of features
(1 if the feature appears, and 0 otherwise) instead of counting the
frequency of the features.

3.2.4 Natural Language Processing-based Approach. TheNLP-based
approach used in [9] is based on the NLP-based approach from the
Stanford CoreNLP library. A command line example of using this
library can be found in section A.2 in the Appendix, and for inter-
ested readers section B.1 provides many useful online resources to
help users make use of this library.

The sentiment analysis in this approach uses the bag-of-words
technique; that is, when the approach encounters a positive or
negative word, it counts the word’s sentiment score. At the end, it
sums all the scores to avoid having the order of the words affect
the sentimental results. The underlying technology that drives the
sentiment analysis of the NLP-based approach is a Recursive Neural
Network that takes advantage of the grammatical structures of
sentences. For those that are interested, the full paper that proposed
this neural network is found here [37].

Furthermore, before feeding the tweet data into the model for
sentiment analysis, tweet normalization and featurization are per-
formed.

3.2.5 Fusion Model. The Fusion model approach, which was pro-
posed by [9], combines the predictions of other classifiers to make
its predictions. The Fusion model is based on fuzzy logic involving
fuzzy measures and is implemented using the Choquet Fuzzy inte-
gral (CFI) and the Heuristic Least Mean Square (HLMS) algorithm.

Choquet Fuzzy Integral
Fuzzy measures attempt to model problems that address decision

making based onmultiple criteria. Whenmultiple attributes/criteria
(the predictions of multiple classifiers, for example) are required to
make a decision, it is important to consider the decision-making
strength of combining these attributes together. For example, mul-
tiple people in a room (the attributes in this example) are trying
to come to a final decision on a subject. Each person then makes a
decision. If in the past person A and person B were always right
when they made the same decision, then this knowledge can be
used to deduce that if person A and B make the same decision in
this scenario, their decision is probably correct.

In the case of the CFI, the idea is to weight the combination
prediction power of all the classifiers used in the Fusion model. For
example, if we have a set 𝐶 of three classifiers: 𝐶 = {𝐴, 𝐵,𝐶, } we
would need to attribute a fuzzy prediction measure to all possible
combinations of these classifiers (that is, the power set of 𝐶 , which
will require 8 (23) fuzzy measures). For example, if classifier A and
B always make the correct choice together, then the fuzzy measure
for {A,B} = 1.0, while if classifier 𝐵 and 𝐶 rarely make the correct
choice when they make the same decision, let the fuzzy measure for
{B,C} = 0.25. The set of measures is defined as 𝜇, where 𝜇 (𝑍) is the
weight importance (the fuzzy measure) of the attributes of the set
𝑍 . From our previous example, suppose 𝑍 = {𝐴, 𝐵} and 𝑌 = {𝐵,𝐶},
then 𝜇 (𝑍) = 1.0 and 𝜇 (𝑌) = 0.25. With an appropriate 𝜇, the CFI
can be used to make predictions given fusion testing data.

In the scope of the present work, fusion testing data instances
take the following form: {𝑝1, 𝑝2, ..., 𝑝𝑛}, where 𝑝𝑖 is the 𝑖th classi-
fier’s prediction and 𝑛 is the number of classifiers. The CFI will
output a real number prediction, which means the prediction must
be converted to the appropriate class. For example, if we have the
following class values: negative = 0, neutral = 2, and positive = 4,
suppose the CFI is given the fusion testing data instance {2,0,2} and
predicts 1.2. The class predicted is therefore neutral.

Heuristic Least Mean Squares
Tomake predictions using the CFI, we need to find an appropriate

𝜇 using the HLMS algorithm, which was proposed by [13]. For those
that are interested, [14] go into detail about fuzzy integrals. Finding
𝜇 effectively involves training the Fusion model using fusion train-
ing instances. A fusion training instance is similar to a test instance,
but it also includes the real tag (actual class) of the fusion instance.
For example, fusion training data instances take the following form:
{𝑝1, 𝑝2, ..., 𝑝𝑛, 𝐿}, where 𝑝𝑖 is the 𝑖th classifier’s prediction, 𝑛 is the
number of classifiers, and 𝐿 is the real-tag/label/class of the data
instance. To acquire these fusion training instances, the classifiers
included in the Fusion model must first be trained on the training
data. Once trained, to evaluate the classifiers, the development data
is used as test data. Lastly, the development data (which is a sub-
set of the original training data) predictions of the classifiers are
converted into fusion training instances.

4 IMPLEMENTATION
4.1 Libraries
The present work used the Stanford CoreNLP library’s packages
(found in [17]), which is implemented in Java, to implement theMax-
Ent, NB, and SVM models. The class used to implement these mod-
els is the edu.stanford.nlp.classify.ColumnDataClassifier
class, and to implement the NLP-based approach, the present work
used the
edu.stanford.nlp.pipeline.StanfordCoreNLP class. Since they
used the Kappalab package (a R programming library) to imple-
ment the CFI and HLMS algorithms, the present work also used
this library and the R programming language to implement these
algorithms.

4.2 Classifiers
The Stanford CoreNLP library was used to implement the MaxEnt,
NB, and SVM classifiers. Examples on how the library was used via
the command line to run the MaxEnt, NB, SVM, and NLP-based
approaches can found in the Appendix in sections A.3, A.4, A.5,
and A.2, respectively.

4.3 Natural Language Processing-based
Approach

The Stanford CoreNLP library parses the sentences of a dataset and
predicts the sentiment of each sentence. It uses the part-of-speech
(POS) tagger for featurization. A tweet with multiple sentences will
therefore have many sentiment classifications attributed to it by the
NLP-based approach. Sentiments are represented in the form of a
value and a string. As such, since [9] did not specify how they dealt
with the above situation, the present work simply took the average

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

Table 1: Stanford CoreNLP sentiment analysis sentiment
value map.

CoreNLP
Sentiment Value CoreNLP Sentiment Mapped
0 very negative negative
1 negative negative
2 neutral neutral
3 positive positive
4 very positive positive

sentiment value of all the sentences to decide a tweet’s sentiment.
Note that the labels used in the present work are negative (0),
neutral (2), and positive (4), while the sentiments produced by the
Stanford CoreNLP library are very negative (0), negative (1), neutral
(2), positive (3), and very positive (4). Since the present work is not
using five labels, the very negative and very positive labels were
simply mapped to negative and positive, respectively (see table
1 for more details). Once the the average sentiment value of all
sentences in a tweet was computed, the present work computed a
tweet’s polarity by rounding the average sentiment to the nearest
sentiment value. For example, according to table 1, if the average
sentence sentiment value is 0.9, then the tweet would be considered
negative, since rounding 0.9 to the nearest integer yields 1. If the
average score was 3.6, the nearest integer would be 4, and since the
present work’s experiments only consider three labels (negative
= 0, neutral = 2, and positive = 4), the sentiment value would be
converted from 4 to 3 (which is positive).

4.3.1 Neutral Tweets Complication. There is an issue that must be
addressed with the implementation method discussed in section
4.3. Since the library predicts neutral sentiments, the present work
had to address the situation where a dataset used did not include
any neutral tweets (for example, the Dataset3 and Stanford dataset
(which are discussed in section 5.4.2 and 5.4.3, respectively) do
not contain any neutral tweets); that is, the NLP-based approach
should not predict neutral sentiments if the training data has only
positive and negative tweets. Therefore, the approach taken was
to ignore the sentiment value 2 (the neutral sentiment’s value)
when rounding to the nearest integer. For example, an average
sentiment value of 1.9 would be rounded to 1 (negative), and a
value of 2.4 would be rounded to 3 (positive). On the rare chance
the average sentiment value was exactly 2 (of equal distance to
1 as to 3), the design approach taken was to select the sentiment
randomly from negative and positive. For example, a tweet with an
average sentiment value of exactly 2would be considered positive or
negative with equal likelihood (which was achieved using random
number generation).

4.3.2 Non-ASCII Characters. The Stanford CoreNLP library ignores
non-ASCII characters. That is, a word that contains a non-ASCII
character (such as ‘é’, for example) is split into two. As such, a bias
exists where a word that is split into two could create a sentimental
shift in the sentence.

4.4 Fusion Model
The Fusion model (proposed by [9]) was implemented using the
Kappalab R programming library, since this library offers the CFI
and HLMS algorithms and was used in [9].

For implementation simplicity, the Q statistic used to filter out
non-diverse classifiers from the fusion model was not implemented.
For readers that are interested inmore information on the Q statistic
used for measuring classifier diversity, [29] provide many details
on this topic.

5 EXPERIMENTS
This section details the experiments run in the present work, which
are as follows: a) varying the 𝑘 in k-fold cross validation (KFCV)
when creating development data and analyzing the effects on perfor-
mance; b) stopword removal and symbol removal, which investigate
the effects that stopwords and symbols have on the performance
results; c) emoticon set varying, which investigates the effects of a
varying of set of emoticons used to replace emoticons with their
respective template words; d) comparing the performance of var-
ious classifiers, which include the MaxEnt, NB, SVM, NLP-based,
and Fusion classifiers; e) investigating the effects of using various
datasets as training data and test data on performance results; and
f) varying the test data between 1) using the Stanford dataset’s test
data to evaluate the classifiers’ results and 2) using k-fold cross
validation to create the test data.

5.1 Experimental Setup
The Java programming language was used to implement most of
the experiments, and the R programming language was used to
implement the Fusion classifier. The following software versions
were used: Java version 1.8.0_171, Stanford CoreNLP Java library
version 3.9.2, R programming language version 3.6.0, and Kappalab
R library version 0.4-7.

5.2 K-fold Cross Validation
Some datasets did not have any test data, and in particular, since
the Fusion model requires development data, KFCV was used to
address this; that is, [9] defined their development data as 20%
of their training data, so the present work used KFCV to select a
similar development data partition (𝑘=5 achieved a 20% subset of
the training data).

According to [24], KFCV is a technique used to evaluate a classi-
fier when only training data is available. The idea is that the training
dataset is partitioned into 𝑘 evenly-sized mutually exclusive parti-
tions (folds). The evaluation process proceeds by iterating through
each fold, where the fold 𝑖 represents the testing data for iteration 𝑖 .
The training dataset at iteration 𝑖 is created by subtracting the 𝑖th
fold from the original training dataset. The evaluation process for
the classifier at iteration 𝑖 proceeds by training the classifier using
the training data at fold 𝑖 and evaluating the classifier using the
testing data at iteration 𝑖 . The total number of true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) is
counted (more details on the evaluation techniques is discussed in
section 5.3). At the end of the iterations the accuracy is computed
using the total of these measures, which averages out the accuracy
of each fold (the accuracy is defined in equation 3). Note that an

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

Figure 1: Example of 4-fold cross validation to create test
data.

example of using 4-fold cross validation to create test data can be
seen in figure 1.

5.2.1 Creating Testing andDevelopment Data. This section includes
a more detailed approach on using KFCV to create test and develop-
ment data. Note that in the experiments, when development data
was required, KFCV was always used to create the development
data; on the other hand, depending on the experiment, the test data
was either created using KFCV or was the Stanford dataset’s test
data.

The methodology used to create the development data (and if
applicable, the test data) was done as follows: Let 𝐴 denote the
training dataset. If the test data is being created using KFCV, 𝐴
is partitioned accordingly into 𝑘 folds. Let 𝑎𝑖 denote the 𝑖th fold
(where 𝑎𝑖 ∈ 𝐴 and |𝑎𝑖 | = |𝐴 |

𝑘
, and the last fold 𝑎𝑘 ’s size may be

slightly larger to accommodate overflow remainder from 𝐴 divided
by 𝑘) and let 𝐴𝑖 denote the remaining training data after removing
the testing data from it (that is, 𝐴𝑖 = 𝐴 - 𝑎𝑖). Once the test data
is created, a similar process is applied to create the development
data. Instead of applying this method to 𝐴, for 𝑘 ′ development data
folds, the method is instead applied to 𝐴𝑖 ; that is, 𝐴𝑖 is partitioned
accordingly into 𝑘 ′ folds. Let 𝑏 𝑗 denote the 𝑖th fold (where 𝑏 𝑗 ∈ 𝐴𝑖

and |𝑏 𝑗 | = |𝐴𝑖 |
𝑘′) and let 𝐵𝑖 denote the remaining training data after

removing the testing and development data (that is, 𝐵𝑖 =𝐴 - 𝑎𝑖 - 𝑏𝑖 =
𝐴𝑖 - 𝑏𝑖). In the case that the test data (denoted as𝑇) is provided, the
KFCV is not required to create the test data, and therefore, the KFCV
method applied to create the development data is applied using the
training set 𝐴 instead of 𝐴𝑖 . An example of this methodology is
illustrated in figure 2.

5.2.2 Dataset Sampling. In the experiments, to ensure the datasets
using KFCV were sampled properly without bias, the lines of the
target dataset were randomly sorted. The datasets were only ran-
domly sorted once to guarantee deterministic results; that is, when
changing the experimental parameters, the dataset and KFCV folds
would remain static throughout the experiments, and therefore,
any change to the performance results could be attributed only

Figure 2: Example of 4-fold cross validation to create test
data and 3-fold cross validation to create development data.

to parameter changes. Otherwise, if the datasets were sorted ran-
domly for each experiment, it would be difficult to attribute a result
change to a parameter change, since maybe the dataset’s permuta-
tion was responsible for the change in results. An extreme example
of this bias is the case where the dataset is originally sorted by la-
bel/sentiment. In this example the folds would contain only tweets
of a certain sentiment (all positive, for example), which would pro-
duce useless/insignificant performance results.

5.3 Experimental Evaluation
To evaluate the models, confusion matrices were built in order
to compute the evaluation measures, which included TP count,
TN count, FP count, FN count, recall, precision, and f1-score for
each class/label. Additionally, for the overall measures of a model’s
performance, I used the accuracy measure, which is defined in
equation 3 according to [27]:

accuracy = TP+TN
FP+FN+TN+TP (3)

, where TP + TN is the total number of data instances properly
labeled, and FP + FN + TN + TP is the total number of data instances.

Note that a web tutorial on computing such measures can be
found here [35] and a more formal definition of some of these
measures (and confusion matrices) can be found here [24].

5.3.1 Combining the Accuracy When Using Development and Test
Data. Usually when running an experiment, the accuracy metric
was used to summarize the general performance of a classifier.
The methodology used to run the Fusion model approach is an
interesting case, since there is training data, development data,
and testing data. Furthermore, since the Fusion model requires
fusion training and fusion testing data to evaluate, this means that
the predictions of the classifiers (trained using the training data)
require using the development data and testing data as a means
to evaluate the classifiers to create the fusion training data. This

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

Table 2: Example confusion matrix of 25 prediction results
of a 3-class (sentiment) classifier. The bold text results are
correct predictions.

Sentiment Actual / Prediction Positive Neutral Negative
Positive 4 6 3
Neutral 1 2 0
Negative 1 2 6

means the Fusion model has a single accuracy result and there
can be two accuracy results for each other classifier (one accuracy
when evaluating a classifier using development data and a second
accuracy when using the testing data to evaluate). Therefore, care
must be taken to compute a single accuracy measure from both
result sets, since it involves adding the results when using the
development data and testing data into a single confusion matrix
to compute the single accuracy result, for each classifier.

Unfortunately, due to an implementation oversight, the present
work did not consider this. As a result, in the following sections,
when results that involve the Fusion model are presented, there
are duplicate result sets; that is, there are usually accuracy results
for when the development data and test data were used. Although
it is not ideal nor incorrect to present both accuracy results, it
takes up more space in the document and makes the present work
less complete since the single accuracy measure for a classifier is
missing.

It is worth mentioning that although the Fusion model is trained
and tested/evaluated using the fusion training data and fusion test-
ing data (instead of technically being trained using the training
data and tested/evaluated using the development and testing data),
for presentation purposes, I included the Fusion model’s single
accuracy in figures that are described to contain the accuracy of
classifiers trained using the training data and evaluated using the
development or testing data.

5.3.2 Confusion Matrix Example. An example of confusion matrix,
which was inspired by [35], is illustrated in table 2. Note that when
counting the TP, TN, FP, and FN rates, they must be counted for
each class. For example, for the positive predictions, the TP rate is
4, the TN rate is 8 (2+6), the FP rate is 9 (6+3), and the FN rate is
2 (1+1). To compute the accuracy, the total number of TP, TN, FP,
and FN rates for each class are used when applying equation 3.

5.4 Datasets
This section discusses the details of the dataset used in the present
work. The following TSA datasets were used: a) Airline [10][3],
b) Dataset3 [2], and c) Stanford Twitter Sentiment [12] (obtained
from [1]). The Stanford Twitter Sentiment dataset was used in [9],
while the datasets a) and b) were not used in their experiments.
A summary of each of the above dataset’s specifications can be
found in table 3. Note that the reason table 3 includes the num-
ber of tweets with non-ASCII characters is that the NLP-based
approach ignores non-ASCII tokens when processing the words in
tweets. Furthermore, some non-ASCII characters made the Stanford
CoreNLP library hang (the API calls would not return), so they were

removed. This information could help the analysis of the experi-
mental results and is presented for completeness. This section also
includes details on the stopword list used as well.

5.4.1 Airline. This Twitter dataset contains various opinions about
six different US airlines. Note that there were a few tweets that
spanned multiple lines. For simplicity reasons, these tweets were
removed from the dataset. This dataset only contains labeled train-
ing data (positive, neutral, and negative tweets). This dataset was
not used in [9].

5.4.2 Dataset3. This dataset did not have much information about
when it was gathered or how the tweets were labeled. This dataset
only contains labeled training data (positive and negative tweets).
This dataset was not used in [9]. A quick glance at the dataset
reveals the tweets do not seem to share a common topic and are
therefore from a variety of domains.

5.4.3 Stanford. The Stanford dataset was originally gathered and
labeled by [12]. It includes labeled training data and testing data,
where the training data contains positive and negative tweets, and
the testing data contains positive, neutral, and negative tweets. The
training data was labeled using a semi-supervised machine learning
approach. [12] queried the Twitter API using a set of emoticons as
queries. The tweets returned from positive emoticon queries were
labeled as positive, and the tweets that were returned from negative
emoticon queries were labeled as negative. The assumption was
that tweets resulting from a positive emoticon query will be positive
and the tweets resulting from negative emoticon queries will be
negative. They removed any emoticon (those used to query the API)
from the resulting training dataset. To create the testing data, they
queried the Twitter API using a set of key words from a variety of
domains. The resulting tweets were manually labeled.

Note that for experiments in the present work that use the Stan-
ford dataset’s test data, the neutral tweets were removed if the
training data contained no neutral tweets. Otherwise, when the
training data contained neutral tweets, the testing data was un-
changed.

What is interesting is that [9] follows the same sentiment analy-
sis approach as [12]; however, when [9] refer to the Stanford dataset
(created by [12]), [9] state that the training data included neutral
tweets, which is a contradiction to the approach described by [12].
Because of this contradiction, it was difficult to understand how [9]
labeled neutral tweets in the [12] dataset, so the present work does
not perform any experiments with neutral tweets in the Stanford
dataset training data, since the Stanford dataset is publicly available
here [1] and the training data does not have any neutral tweets.

5.4.4 Stopwords. The present work used a different set of stop-
words than those used in [9], since they did not explicitly mention
which set of stopwords they used. The stopword list used in the
present work was originally retrieved from [22], since this set of
stopwords was used in the past in a TSA project for an undergrad-
uate information retrieval course, and can now be found here [26]
in an open source code repository.

The same stopword list was used in all the experiments. The
stopword list file size is 6 KB and there are 779 stopwords. A few
sample stopwords from the dataset follow: ‘the’, ‘maybe’, ‘have’,
‘until’, and ‘who’.

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

Table 3: Dataset specifications

Airline Training Dataset [10][3]:
Date obtained February 2015
Dataset size 3342 KB
of tweets 14,873
of positive tweets 2,368
of negative tweets 9,178
of neutral tweets 3,099
of tweets with
non-ASCII characters 1,911
of tweets spanning
multiple lines 233

Dataset3 Training Dataset [2]:
Date obtained Not clear
Dataset size 8461 KB
of tweets 100,000
of positive tweets 56,462
of negative tweets 43,538
of neutral tweets 0
of tweets with
non-ASCII characters 2,317

Stanford Training Dataset [12][1]:
Date obtained From April 6th 2009

to June 25th 2009
Dataset size 233MB
of tweets 1,571,678
of positive tweets 789,605
of negative tweets 782,073
of neutral tweets 0
of tweets with
non-ASCII characters 29,962

Stanford Testing Dataset [12][1]:
Date obtained From May 11th 2009

to June 14th 2009
Dataset size 73 KB
of tweets 498
of positive tweets 182
of negative tweets 139
of neutral tweets 177
of tweets with
non-ASCII characters 0

5.5 Classifier Configuration
This section explains the chosen parameter values used to config-
ure the classifiers in the experiments and why these values were
chosen. These values may be a source of error in the performance
results, since the present work did not investigate the effects of
varying these classifier parameters. Most of the classifiers’ parame-
ters were set to default values. That being said, future work could
involve investigating the effects of varying theses parameters on
the accuracy of the results.

5.5.1 Chosen Features. Features (numeric values) are used by clas-
sifiers to train their mathematical models and are used to make

predictions, given test data. Since Twitter data is textual, it must
be converted to numeric values (featurized) to be able to be rep-
resented in a classifier’s model. As such, standard featurization
techniques offered by the Stanford CoreNLP library were chosen.
For example, the bigram and unigram features were used to parse
tweets word-by-word. This was accomplished using the following
parameter configuration: ‘useNGrams=true’, ‘maxNGramLeng=2’,
and ‘minNGramLeng=1’. These features were chosen because: a)
these features were used in [12], and b) a simple experiment re-
vealed that combining bigrams and unigrams produced the best
results for the NB classifier; that is, the simple experiment involved
running the NB classifier on one of the Stanford CoreNLP library’s
example datasets, and by observing the accuracy of each feature
configuration, the unigram and bigram features yielded the best re-
sults. Furthermore, the other included featurization technique was
used to create unigrams and bigrams from the prefix and suffix of
the parsed tokens (words) found in tweets. This was accomplished
using the following parameter configuration: ‘useSplitPrefixSuf-
fixNGrams=true’.

5.5.2 Support Vector Machine. To configure the SVM classifier, all
the default parameters provided by the Stanford CoreNLP library
were used. Note that according to [16], the SVM functionality of
the library is implemented using SVMLight (see [23] for more in-
formation).

5.5.3 Maximum Entropy and Naive Bayes. Both these classifiers
used the default parameters (if any) offered by the Stanford CoreNLP
library.

5.5.4 Natural Language Processing-based Approach. Similar to [9],
the following annotator parameters were used for implementing the
NLP-based approach using the Stanford CoreNLP library: ‘tokenize’,
‘ssplit’, ‘pos’, ‘lemma’, ‘parse’, and ‘sentiment’. Note that the ‘dcoref’
parameter was omitted, since this parameter was not recognized by
the library, and the ‘ner’ parameter should have been added as well,
since [9] used this parameter, but unfortunately it was only noticed
at the end of the present work that this parameter was missing, and
as such, due to time constraints, this parameter could not be added.

5.5.5 Fusion Model. In [9], they implemented an algorithm to find
the optimal parameters for the HLMS algorithm. The default con-
figuration was used for the HLMS algorithm in the present work,
where it was assumed that all classifier combinations had equally
likely prediction power (their fuzzy measure were all identical).
However, this is probably a source of bias, since some algorithms
perform better than others (they are not identical), which means
they most likely have different combination prediction power. How-
ever, this bias proved to not be significant, since the Fusion model
generally produced significantly accurate results (greater than 99%
accuracy).

The following parameter configuration was used for the HLMS
algorithm: ‘alpha = 0.05’, ‘epsilon = 1e-6’, and ‘maxiter = 500’. Note
that the ‘epsilon’ and ‘maxiter’ parameters are set to their default
values. [31] provide a good example on using the Kappalab R pro-
gramming library and use the above parameter configuration to
run the HLMS algorithm, which is the reason this configuration
was chosen in the present work.

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

Table 4: Accuracy of each method found in various works
whenusing the Stanford dataset. U: Unigram, B: Bigram, and
POS: part of speech tags features used.

Work MaxEnt NB SVM NLP Fusion Fusion
+ NLP - NLP

[9] 79.9% 74.3% 80.5% 55.1% 81.5% 79.9%
[12]:
U 80.5% 81.3% 82.2% - - -
B 79.1% 81.6% 78.8% - - -
U+B 83.0% 82.7% 81.6% - - -
U +POS 79.9% 79.9% 81.9% - - -

In [9], their parameters were configured as follows, ‘’alpha = 0.25’,
‘epsilon = 1e–10’, and ‘maxiter = 500’, which is slightly different
than the configuration used in the present work. This could be a
source of error in the results, since the present work’s Fusion model
is implemented in a slightly different way than in [9]. Unfortunately,
this was only realized at the end of the present work, and therefore,
due to time constraints, these parameters were not adjusted.

5.6 Experimental Reproduction
Some of the experiments in the present work attempted to repro-
duce the results detailed in [9] and [12]. The only dataset that the
present work and these other two papers have in common is the
Stanford dataset. Therefore, one of the goals of the present work
was to reproduce some of the classifiers’ accuracy results (when
trained and tested using the Stanford dataset) found in table 4,
which lists a summary of the results found in [9] and [12].

5.6.1 Development Data K-Fold Cross Validation Experiment. In this
experiment set, the goal was to analyze the effects on performance
results when varying the 𝑘 used to perform KFCV to create the
development data.The test data was created using KFCV with 𝑘 ′ =
10, and the development data was created similarly but with 𝑘

varied from 2 to 50.
Since the test data foldswere created before the development data

folds (see section 5.2 for more details) and the 𝑘 ′ remains constant
throughout the experiment set, the test dataset size always remains
as approximately 10% of the size of the Airline dataset, while the
size of the training data and development data varied as 𝑘 changes
for the development data KFCV. As 𝑘 was increased, the amount of
training data increased. The results are displayed in tables 5 and
6, and by analyzing the results some findings were made and are
detailed later in this section.

Experimental Configuration
The Airline dataset was used. The classifiers involved were as

follows: Fusion, MaxEnt, NB, SVM, and NLP-based. The emoticon
set used was the small set, which is shown in table 10. Stopwords
were removed. Symbols were not removed.

Findings
• Finding a): It can be seen that the SVM and NB are the
classifiers that are most affected by the amount of training
data.

• Finding b): We can observe that as 𝑘 increases the accuracy
of NB increases. It can also be seen that the increase rate

Table 5: Accuracy (in percentage) of the classifiers using de-
velopment data as the test data when varying the number of
development data folds, 𝑘 .

Model/K 2 3 4 5 7 15 25 50
Fusion 100 99.9 99.9 99.3 99.8 99.7 99.5 99.1
MaxEnt 100 100 100 100 100 100 100 100
NB 83.4 86.8 87.8 88.4 89.0 89.6 89.9 90.0
NLP 41.3 41.3 41.3 41.3 41.4 41.3 41.3 41.3
SVM 38.2 41.3 38.6 41.3 41.9 41.9 41.0 41.3

Table 6: Accuracy (in percentage) of the classifiers simply
using the test data as the test data when varying the number
of development data folds, 𝑘 . Training data: Airline, Testing
data: 10-fold cross validation, Development data: (2 to 50)-
fold cross validation.

Model/K 2 3 4 5 7 15 25 50
Fusion 100 99.9 99.9 99.3 99.8 99.7 99.5 99.1
MaxEnt 100 100 100 100 100 100 100 100
NB 83.4 86.8 88.0 88.5 89.0 89.6 89.9 90.0
NLP 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3
SVM 43.1 43.9 44.8 43.9 44.6 43.2 43.5 43.2

of the accuracy of NB is the most significant for small 𝑘 ,
but as 𝑘 becomes large, the increase rate of NB’s accuracy
decreases (figure 3 illustrates this).

• Finding c): The NB classifier’s best accuracy (90%) is for
the largest 𝑘 (𝑘=50). This trend is not found in the other
classifiers’ results. In fact, the Fusion model’s accuracy has
the opposite behavior: the accuracy decreases (very slightly)
as 𝑘 increases. Although the decrease rate of the Fusion
model’s accuracy is almost negligible, it, nevertheless, is still
present.
– This is most likely the case because with larger 𝑘 , the
development data fold size is smaller, which means the
Fusion model has less fusion training data, while NB has
more training data.

• Finding d): The SVM model appears to be slightly more
sensitive to the amount of training data it was trained with
compared with the other classifiers; that is, its accuracy fluc-
tuates more than the others, without demonstrating any
clear trend. In the first three columns (for 𝑘 = 2, 3, and 4) of
table 5, we can see the SVM’s accuracy fluctuates between
~38% to ~41%.

5.7 Stopword and Symbol Removal Experiment
The goal of this experiment set was to investigate the effects that
symbols and stopwords have on the accuracy of the classifiers. The
effects of symbols were analyzed because [12] state that emoticons
have a negative impact on the performance of the MaxEnt and SVM
models, and emoticons are generally a set of symbols. The reason
the effects of stopwords were analyzed is because [33] state that
some research suggests stopwords contain sentimental information,

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

Figure 3: Accuracy of the NB classifier when varying the
number of development data folds, 𝑘 . Training data: Airline,
Testing data: 10-fold cross validation, Development data: (2
to 50)-fold cross validation, NB-dev: NB tested on develop-
ment data, and NB-test: NB tested on testing data.

thus, removing stopwords may negatively impact classifier perfor-
mance results, while other research suggests removing stopwords
has a positive impact on performance. Note that similar experi-
ments were conducted on the Stanford and Dataset3 datasets in
section 5.7.1.

In this experiment set the stopword removal and symbol removal
were varied; that is, four types of experiments were conducted:
a) stopwords were removed and symbols were removed (RSW &
RSYM), b) stopwords were removed and symbols were kept (RSW
& KSYM), c) stopwords were kept and symbols were removed (KSW
& RSYM), and d) stopwords were kept and symbols were kept (KSW
& KSYM).

The experimental results are illustrated in figures 4 and 5. To
gain insight into the performance effects of symbols and stopwords,
both figure’s results must be considered since they present the
accuracy when using KFCF (using 𝑘 = 2) to create both the testing
data and development data.

Limitations
Due to time constraints, a source of error in this experiment set

exists, since 5-fold cross validation (5FCV) was not used for the
development data (the size of the development data was not 20% of
the size of the Airline dataset) nor was 10FCV used to create the
test data. For time constraint reasons, 2FCV was used to create both
the development data and test data, since a greater number of folds
would have taken considerably more execution time.

Experimental Configuration
The Airline dataset was used. The classifiers involved were as

follows: Fusion, MaxEnt, NB, SVM, and NLP-based. The emoticon
set used was the small set, which is shown in table 10. Stopword
removal and symbol removal were varied.

Findings

• Finding a): It is difficult to conclude anything significant re-
garding the SVM, since: a) for the KSW & KSYM experiment,
the SVM’s accuracy (50.1%) is quite different (~8%) when
using the 2FCV testing data compared with the accuracy
(41.8%) when using the 2FCV development data to evaluate
the classifier, and b) from the results detailed in section 5.6.1,
it is not clear how significant the SVM’s accuracy fluctua-
tions can be attributed to the difference in training data as a
result of the use of a small 𝑘 .
– In general, the accuracy of a model when using these
two different datasets used to evaluate the models (de-
velopment and test data) should be similar (which was
confirmed in a few experiments that were not discussed
in this paper, when 𝑘 = 10 for the test data and 𝑘 = 5 for
the development data), but it seems the low value of 𝑘 is
responsible for these inconclusive results regarding the
SVM classifier.

• Finding b): For the other classifiers, since the accuracy re-
sults are consistent between both figures for each of the four
experiments, it appears the choice of fold for the test data
was not responsible for the change in accuracy, which means
it can be deduced that:
– The NB model does better when stopwords are kept and
symbols are removed, which supports the idea that stop-
words have sentimental value for classifiers.

– The NLP-based model performs more poorly when stop-
words are removed and symbols are kept. A proposed
hypothesis as to why this behavior occurred is that the
NLP-based approach uses a bag-of-words technique [9],
which means it analyzes the sentiment of each word found
in a sentence. It attributes symbols with neutral sentimen-
tal value, which means the polarity of a sentence could be
shifted to neutral by the presence of symbols, and since
the Airline dataset consists primarily of negative tweets
(see section 5.4.1), negative tweets are probably predicted
as neutral tweets because of the presence of symbols. Inter-
esting future work could involve reproducing this experi-
ment with a dataset that has a large ratio of neutral tweets.
In such an experiment the NLP-based approach’s perfor-
mance would most likely benefit from keeping symbols
in the dataset.

– The MaxEnt and Fusion model are virtually unaffected by
the presence of stopwords and symbols, and since this is
the case, it would be interesting to reproduce this experi-
ment while varying the classifier sets used in the fusion
model (like in the experiment detailed in section 5.8) to see
what effects symbols and stopwords have on the Fusion
model when the Fusion model’s accuracy is not ~100%.

5.7.1 Varying Datasets. This experiment set is similar to the one
discussed in section 5.7. The goal of this experiment set is to see
what effects stopwords and symbols have on performance for a
variety of datasets. The results of the experiments can be found in
figures 6, 7, and 8, when the classifiers are trained using the Airline,
Dataset3, and Stanford dataset, respectively, and the findings are
discussed later in this section.

Limitations

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

Figure 4: Stopword and symbol removal analysis when data
used to test the classifiers is the development data. Training
data: Airline, Testing data: 2FCV, Development data: 2FCV,
RSW: removed stopwords, KSW: kept stopwords, RSYM: re-
moved symbols, and KSYM: kept symbols.

Figure 5: Stopword and symbol removal analysis when data
used to test the classifiers is the test data. Training data:
Airline, Testing data: 2FCV, Development data: 2FCV, RSW:
removed stopwords, KSW: kept stopwords, RSYM: removed
symbols, and KSYM: kept symbols.

For time constraint reasons, only the following types of exper-
iments were performed: a) stopwords are kept and symbols are
removed (KSW & RSYM) and b) stopwords are removed and sym-
bols are kept (RSW & KSYM). Furthermore, the Fusion model and
NLP-based model were not included in this experiment set for
similar reasons.

Experimental Configuration
The Airline, Dataset3, and Stanford datasets were used. The

testing data used was from the Stanford dataset and created using
10-fold cross validation. There was no development data set created
in this experiment set. The classifiers involved were as follows:

Figure 6: Stopword and symbol removal analysis without Fu-
sion and NLP-based models. Training data: Airline, Testing
data: Stanford and 10FCV, RSW: removed stopwords, KSW:
kept stopwords, RSYM: removed symbols, and KSYM: kept
symbols.

Figure 7: Stopword and symbol removal analysis without Fu-
sion andNLP-basedmodels. Training data: Dataset3, Testing
data: Stanford and 10FCV, RSW: removed stopwords, KSW:
kept stopwords, RSYM: removed symbols, and KSYM: kept
symbols.

Figure 8: Stopword and symbol removal analysis without Fu-
sion andNLP-basedmodels. Training data: Stanford, Testing
data: Stanford and 10FCV, RSW: removed stopwords, KSW:
kept stopwords, RSYM: removed symbols, and KSYM: kept
symbols.

MaxEnt, NB, and SVM. The emoticon set used was the small set,
which is shown in table 10. Stopword removal was varied and
symbol removal was varied.

Findings
• Finding a): Although the following analysis is not related
to stopword or symbol removal, by analyzing the results, the
following results suggest that in general the performance of

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

the classifiers underperform when trained using the Airline
dataset compared with when trained using other datasets:
– The NB classifier is the only classifier for which its per-
formance is not perfect when using 10FCV to create the
test data (see figure 6).

– The accuracy of NB, when trained on the Dataset3 and
Stanford datasets, is at least 99.7%.

– The accuracy of each classifier is generally lower when
using the Airline dataset as training, than when using
other datasets as training data (most of the accuracies are
lower in the Airline dataset).

A hypothesis as to why the above is the case could be due
to either of the following (which have supporting evidence
from the results discussed in later sections):
– The size of the Airline dataset (it is the dataset with the
fewest tweets)

– The limited domain of the Airline dataset (the dataset
contains only airline-related tweets)

– The additional class/label in the Airline dataset that is not
present in the other datasets; that is, the Dataset3 and
Stanford dataset have only positive and negative tweets,
while the Airline dataset includes neutral tweets.

– A combination of the above.
• Finding b): the performance of the classifiers are signifi-
cantly higher (especially for the SVM) when 10FCV is used
to evaluate the models.
– This is likely the case because the test data is of the same
domain as the domain of the training data when using 10-
fold cross validation; that is, the Stanford test data contains
tweets from a variety of domains, so if the training data
did not contain many tweets of the Stanford test dataset’s
domain, then the classifier’s model (built from the training
data) did not properly capture the domain’s particularities.
As a result, the Stanford test data will lead to decreased
performance compared with the performance when using
10FCV to create the test data.

• Finding c): when using the Airline dataset as training data,
the average performance results are the worst; when using
Dataset3, the average performance is higher than Airline;
and when using the Stanford dataset the average perfor-
mance results are the best in this experiment set.
– It seems increasing the amount of training data increases
the performance of the classifiers, since the smallest dataset
is Airline (which has the worst average performance), the
next smallest is Dataset3 (which has better average perfor-
mance than the Airline dataset), and the biggest dataset is
the Stanford dataset (which has the best average perfor-
mance in this experiment set).

• Finding d): for the SVM classifier, when the training data
used is Stanford and Dataset3, the SVM’s performance ben-
efits the most when stopwords are included and symbols
are removed; that is, when comparing the KSW & RSYM
and RSW & KSYM experiments, there is a performance in-
crease of 8.1% and 7.8%when using the Stanford andDataset3
dataset, respectively.
– The above is in agreement with the remarks made in [12]
and [33], that symbols can hinder the SVM’s performance

and stopwords hold sentimental value for classifiers, re-
spectively.

• Finding e): What is interesting is that for the Airline dataset
the opposite of Finding d) is the case: The SVM classifier’s
performance benefits most when stopwords are removed
and symbols are kept. This difference may be attributed to
any of the following points:
– The limited size of the Airline dataset. A hypothesis is that
a large dataset may benefit a classifier’s performance when
keeping stopwords, since due to the size of the dataset, the
classifier can take advantage of the many relationships
among stopwords and non-stopwords. However, in the
case of a smaller dataset, stopwords may be so rare that
such relationships cannot be found, and therefore, cannot
be exploited by the classifier effectively. As a result, in this
case a classifier is better to ignore stopword relationships
(by removing stopwords) and focus on taking advantage
of the limited number of more relevant/stronger relation-
ships found in the small dataset.

– The additional class/label in the Airline dataset that is not
present in the other datasets; that is, the Dataset3 and
Stanford dataset only have positive and negative tweets,
while the Airline dataset includes neutral tweets.

– My hypothesis is that the stopword removal had the great-
est impact on the performance compared with the effects
of symbols. In other words, removing symbols and stop-
words would yield better accuracy than removing stop-
words and keeping symbols, but due to the limitations
mentioned at the start of this section, I leave this investi-
gation as future work.

5.8 Fusion Model and Classifier Diversity
Experiment

The goal of this experiment set was to see the the effects of classifier
diversity on the performance of the Fusion model. By leaving out
some classifiers and including others in the Fusion model, analyz-
ing the performance results will provide insight into the effects
of classifier diversity. Recall that there was no diversity measure
implemented in this experiment set to filter non-diverse classifiers,
such as the Q statistic implemented in [9]. Note that this set of
experiments is divided in two subsection: section 5.8.1 and section
5.8.2 discuss the results when using the Airline and Stanford dataset
as training data, respectively.

Limitations
Due to time constraints, I did not run this experiment set for

the Dataset3 dataset, and I only ran a subset of this experiment
set (only for a couple of classifier sets) for the Stanford dataset. It
would have been interesting to see the results, since they may have
given more insight than available by only observing the results
shown in figure 9 and table 7. For example, it is not clear if the
accuracy of the Fusionmodel is limited by themaximum accuracy of
a classifier in its classifier set, since for each classifier set, the Fusion
model’s accuracy was at most the best accuracy of its individual
classifiers. Although the results found in [9] suggest the Fusion
model can outperform the accuracy of its individual classifiers,
there are not enough results in the present work to reproduce [9]’s

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

findings. Furthermore, future work could involve reproducing these
experiments while comparing the diversity of the classifiers.

Experimental Configuration
The Airline and Stanford dataset were used. The testing data

used was different for both subsets of experiments. The classifiers
included were also different for both subsets of experiments. Other-
wise, the following experimental configuration was shared between
both experiment sets: a) 5-fold cross validation was used to create
the development dataset; b) stopwords were removed; c) symbols
were not removed; and d) the emoticon set used was the small set,
which is shown in table 10.

5.8.1 Airline Dataset. This experiment set investigates classifier
diversity and its effects on the Fusion model’s performance when
using the Airline dataset as training data.

The experimental results can be seen in figure 9, where each bar
represents the accuracy of the Fusion model for a different subset of
classifiers. The minimum classifier set size was 2, since the Fusion
model combines classifier predictions (it would not make sense to
have a single classifier in a classifier set, because there would be no
data fusion at all). To analyze these results, the performance of the
other classifiers in these experiments was also considered. Table 7
contains the accuracies of the classifiers used in this experiment,
including their accuracy when testing data and when development
data was used to evaluate the classifier. The findings that were
found are discussed later in this section.

Experimental Configuration
In this experiment set, the Airline dataset was used as training

data and 10-fold cross validation was used to create the test dataset.
The classifiers that were included in this experiment are as follows:
Fusion, MaxEnt, NB, SVM, and NLP-based.

Findings

• Finding a): At first glance, it would appear that the Fusion
model only performs as well as its best performing classi-
fier; however, the accuracy of the Fusion model when using
the MaxEnt, SVM, and NLP-based classifiers would suggest
otherwise. MaxEnt has 100% accuracy, yet the Fusion model
only obtained 85.5% accuracy.
– The remark above supports the claim made by [9]: that
diversity of the classifier’s predictions is important; that
is, having classifiers that make predictions that contradict
each other is good for the Fusion model.

• Finding b): Another interesting result is comparing the
accuracy of the Fusion model for the {MaxEnt, SVM} and
{NB,SVM} classifier sets, which will be referred to as classifier
sets a) and b), respectively, in this section, for sake of discus-
sion simplicity. Both sets a) and b) contain the SVM model,
which does relatively poorly on its own (~42% accuracy),
and contain a model that does relatively well. Observing the
accuracy of the Fusion model for the classifier set a) reveals
the accuracy is nearly identical to the accuracy of the single
MaxEnt model (100% v.s 99.5%), while the accuracy of the fu-
sion model for set b) is significantly lower than the accuracy
of the single NB model (~88% vs. 58.8%).
– This is another finding that supports the idea that classifier
diversity has an effect on the Fusion model’s accuracy.

Figure 9: Fusion model accuracy for all possible classifier
subsets of size two among the MaxEnt (ME), NB, SVM, and
NLP-based (NLP). Training data: Airline, Testing data: 10-
fold cross validation, Development data: 5-fold cross valida-
tion.

Table 7: Accuracy of the various classifiers used in the fusion
model diversity experiment. Training data: Airline, Testing
data: 10FCV, and Development data: 10FCV.

Classifier Testing data Accuracy (%)
MaxEnt dev 100
MaxEnt test 100
NB dev 88.4
NB test 88.5
NLP dev 41.3
NLP test 41.3
SVM dev 41.3
SVM test 43.9

5.8.2 Stanford Dataset. This experiment set investigates classifier
diversity and its effects on the Fusion model’s performance when
using the Stanford dataset as training data. The results of this
experiment set can be seen in tables 8 and 9. The findings that were
found are discussed later in this section.

Limitations
Only two classifier sets were used in this experiment set due to

time constraints, namely: the sets {MaxEnt, NB} and {MaxEnt, NB,
NLP-based}. The SVM was excluded, since the implementation was
not efficient enough to run quickly on a large dataset (future work
could involve improving the efficiency of my Java project’s API to
the Stanford CoreNLP library’s SVM).

Experimental Configuration

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

Table 8: Accuracy of the classifiers for both classifier sets us-
ing development data to test the classifiers. Training data:
Stanford, Testing data: Stanford, and Development data:
5FCV.

Classifier/Classifier Set {MaxEnt, NB} {MaxEnt, NB, NLP}
Fusion 100% 100%
MaxEnt 100% 100%
NB 99.9% 99.9%
NLP-based - 55.4%

Table 9: Accuracy of the classifiers for both classifier sets
using test data to test the classifiers. Training data: Stanford,
Testing data: Stanford, and Development data: 5FCV.

Classifier/Classifier Set {MaxEnt, NB} {MaxEnt, NB, NLP}
Fusion 100% 100%
MaxEnt 100% 100%
NB 100% 100%
NLP-based - 58.8%

In this experiment set, the Stanford dataset was used as training
data and as test dataset. The classifiers that were included in this
experiment are as follows: Fusion, MaxEnt, NB, and NLP-based.

Findings
• Finding a): The Fusion classifier obtains 100% accuracy for
both classifier sets.
– It would have been interesting to see the effects on perfor-
mance when using other classifier sets, since when using
the Airline dataset and the classifier sets {MaxEnt, NB} and
{MaxEnt, NB, NLP-based}, the Fusion model also had 100%
accuracy.

• Finding b): It can also be seen that the NLP-based method
does relatively poorly, although the results are close to accu-
racy results (using the Stanford dataset) found by [9], which
are shown in table 4. This is good, since one of the goals of
the experiments of the present work was to reproduce some
of the experimental results found [9] and [12].

5.9 Emoticon Experiment
The goal of this experiment set was to see the effects emoticons
have on performance. The following lists of emoticons were used
during the tweet normalization phase, which is discussed in sec-
tion 3.1, to investigate their effects on performance: an empty list
of emoticons, a small list of emoticons (see table 10), and an ex-
tended list of emoticons (see table 13). The experiments found in
this section can be summarized as follows: section 5.9.1 analyzes
the frequency of emoticons in the datasets, section 5.9.2 analyzes
the effects of emoticons on the NLP-based approach, section 5.9.3
analyzes the effects of emoticons for each dataset while using the
Stanford dataset as test data, analyzes the effects of emoticons for
each dataset while using 10FCV to create test data 5.9.4, and sec-
tion 5.9.5 analyzes the effects of emoticons for each classifier using
10FCV for creating test data.

Motivation

Table 10: The small emoticon set used in some of the present
work’s experiments, which are also used in the experiments
performed in [12].

Positive Negative
:-) :-(
:) :(
=) =(
:D

The motivation for conducting these experiments is as follows:
[9] used some of the emoticons (some of which are illustrated in ta-
ble 10) used in the experiments from [12]. It can be argued that this
list is limited in the context of applying it to tweet normalization;
that is, many emoticons (‘=D’, for example) will not be converted
to their appropriate template words. As a result, since emoticons
consist primarily of symbols and [12] state symbols negatively af-
fect performance, an extended list of emoticons would most likely
benefit performance. Furthermore, another limiting factor is that
[12] include emoticons such as ‘:)’; however, they do not include
its mirror-equivalent (‘(:’) emoticon. Both ‘:)’ and ‘(:’ are arguably
positive emoticons. In the present work, the term mirror-equivalent
emoticon is used to denote an emoticon that keeps its sentiment
when the order of its characters is reversed, and non-symmetric
characters (such as ‘(’, for example) are replaced with their mir-
rored character (for example, ‘)’). Symmetric characters such as ‘:’
can simply be found in the mirror-equivalent emoticon without
being replaced. Some emoticons may not have a mirror-equivalent
emotion; for example, the positive emoticon ‘:D’ does not have
a mirror-equivalent emoticon, since ‘D:’ would be considered a
negative emoticon.

Extended Emoticon Set
As such, the present work proposed an extended list of emoti-

cons, which can be found in table 13. The extended emoticon list
was compiled by simply browsing the web. Each emoticon was man-
ually inspected to make sure the sentiment of the emoticon was
accurate. The extended set also included each emoticons’ mirror
when possible.

Limitations
• A source of error is present regarding the emoticons used in
[12]; that is, the emoticons they used to query the Twitter
API for creating the Stanford dataset included two emoticons
that each contained a white space (‘:)’ and ‘: (’). Since the
implementation of the present work parsed tweets word-
by-word (that is, by delimiting the tweet by white spaces),
the emoticons that include white spaces would never have
been detected in the present work’s implementation. As such,
these emoticons were removed from the present work.

5.9.1 Emoticon Frequency Analysis. This experiment analyzes the
presence of emoticons in the datasets. To get an idea of the pres-
ence of emoticons in the three datasets used in the experiments of
the present work, the number of emoticons in each dataset were
counted. Since this experiment set used two sets of emoticons (the
small emoticon set shown in table 10 and the extended emoticon set
found in table 13 in the Appendix), these sets were used to count the

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

number of emoticons found in each dataset. Furthermore, since the
tweet normalization (for more information on emoticons and their
role in tweet normalization see section 3.1) converts emoticons into
their template words (positive and negative emoticons are replaced
with the word ‘smile’ and ‘frown’, respectively), it may be impor-
tant to count the frequency of these template words in the datasets
before normalization. Since some of the datasets are relatively large
(the Stanford dataset, for example), some automation was added to
help count the emoticon frequencies. The method used is presented
as follows:

(1) The frequency of the whole words ‘smile’ and ‘frown’ found
in the datasets were counted. Words that contained these
words, for example, ‘smiling’, were not counted.
• This enabled the ability to find the frequency of these
words that are actually found in the datasets. Without this
step, after replacing emoticons with their template words
(‘smile’ or ‘frown’), there would have been no way of
knowing how many emoticons were replaced with their
template words vs. how many template words were al-
ready in the dataset.

(2) The frequency of the emoticon template words in the normal-
ized datasets (the datasets that had their emoticons replaced
with the emoticon’s respective template word) were counted.

(3) The template word frequencies of the normalized datasets
were subtracted from the template word frequencies of the
original datasets, which resulted in the emoticon frequency.

Table 11 summarizes the emoticon frequency analysis results
obtained by applying the steps above, and by observing these results,
the following remarks can be made:

Findings Part 1

• Finding a): The emoticons present in the Airline dataset
primarily consists of the emoticons from the small emoti-
con set, since there are only 15 and 10 additional positive
and negative emoticons, respectively, recognized using the
extended set.

• Finding b): Both the Dataset3 and Stanford datasets have
a significant number of additional emoticons from the ex-
tended emoticon set compared with the small emoticon set.

Furthermore, to gain a better understanding when comparing the
emoticon frequencies between datasets, the emoticons’ frequency
were normalized with respect to the number of tweets in their
respective dataset, which can be seen in table 12. This way, the
normalized frequency table can illustrate the fraction of tweets that
have emoticons. The following can be deduced when using the
extended emoticon set vs. the small emoticon set:

Findings Part 2

• Finding a): For the Airline dataset, there are approximately
1.2 and 1.3 times more normalized positive and negative
emoticons, respectively.

• Finding b): For the Dataset3 dataset, there are approxi-
mately 1529 and 18.1 times more normalized positive and
negative emoticons, respectively.

• Finding c): For the Stanford dataset, there are approximately
51 and 17.9 times more normalized positive and negative
emoticons, respectively.

Table 11: Number of emoticons found in datasets. PE-S: posi-
tive emoticon from small set, NE-S: negative emoticon from
small set, PE-E: positive emoticon from extended set, NE-E:
negative emoticon from extended set, and �Neu and ∃Neu:
without and with neutral tweets, respectively. The ‘smile’
and ‘frown’ column represent the frequency of these words
in the datasets before normalization.

Dataset ‘smile’ ‘frown’ PE-S NE-S PE-E NE-E
Airline 3 1 63 31 78 41
Dataset3 142 4 1 40 1529 722
Stanford:
Train 1952 78 341 529 17402 9478
Test: �Neu 0 0 26 13 33 17
Test: ∃Neu 0 0 26 13 33 18

Table 12: Fraction (in percentage) of tweets that contain
emoticons. PE-S: positive emoticon from small set, NE-S:
negative emoticon from small set, PE-E: positive emoticon
from extended set, NE-E: negative emoticon from extended
set, and �Neu and ∃Neu: without and with neutral tweets,
respectively. The ‘smile’ and ‘frown’ column represent the
fraction of tweets that contain these words in the datasets
before normalization.

Dataset ‘smile’ ‘frown’ PE-S NE-S PE-E NE-E
Airline 0.020 0.007 0.424 0.208 0.524 0.276
Dataset3 0.142 0.004 0.001 0.040 1.529 0.722
Stanford:
Train 0.124 0.005 0.022 0.0337 1.107 0.603
Test: �Neu 0 0 5.221 2.610 6.627 3.414
Test: ∃Neu 0 0 7.242 3.621 9.192 5.014

Using these remarks, the following hypotheses were made: a)
the Dataset3 should be the dataset that benefits the most from using
the extended emoticon set, b) this should also be the case for the
Stanford dataset to a lesser degree, and c) for the Airline dataset, the
performance increase will be negligible compared with the other
two datasets.

5.9.2 Effects of Emoticons using All Datasets on the NLP-based
Approach. In this experiment set, the emoticon list used to replace
emoticons with their template words were varied, and the effects
on the NLP-based approach were examined. The results can been
seen in figure 10, and the findings that were found are discussed
later in this section.

Limitations
• Due to time constraints, not all combinations of datasets and
emoticon sets were included in this experiment set.

• Although development data was created, it is worth noting
that the NLP-based approach does not require development
data to be evaluated, but due to implementation limitations,
all models were run at once.

Experimental Configuration
In this experiment set, the Airline, Dataset3, and Stanford datasets

were used as training data. The Stanford dataset was used as the

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

test dataset. 5FCV was used to create the development dataset.
Only the NLP-based approach was included in this experiment set.
Stopwords were removed. Symbols were not removed. The var-
ied emoticon lists are as follows: an empty list (no emoticons are
replaced), the small emoticon list, and the extended emoticon list.

Findings

• Finding a): The NLP-based approach performs relatively
similar for the following: Dataset3 using an empty emoticon
set, Dataset3 using the extended emoticon set, and Stanford
using the small emoticon set; that is, each accuracy is within
1.1% of each other.

• Finding b): The model’s accuracy is ~14% lower when per-
formed on the Airline dataset using the small emoticon set.
This behavior may be attributed to the following reasons:
– The limited domain of the Airline dataset. Recall that the
test data is from the Stanford datasets (also note that the
Stanford dataset contains neutral tweets that are removed
when used to test the other datasets that do not have neu-
tral tweets), which include tweets of a variety of domains
according to [12]. All tweets in the Airline dataset are
airline-related, while the Stanford and Dataset3 datasets
have tweets from a variety of domains.

– The additional class/label in the Airline dataset that is not
present in the other datasets; that is, the Dataset3 and
Stanford dataset only have positive and negative tweets
while the Airline dataset includes neutral tweets. With an
extra class to predict, the NLP-based method may struggle
compared with predicting only two sentiment classes.

– A combination of the two points above may also be the
reason for the observed behavior.

• Finding c): Although the increase is small (0.5%), it can be
seen that when using the Dataset3, the extended emoticon
set increases the NLP-based approach’s accuracy more than
the the empty emoticon set.

5.9.3 Effects of Emoticons using All Datasets and Stanford Test Data.
In this experiment set, the emoticon list used to replace emoticons
with their template words was varied for each dataset, and the
effects on the MaxEnt, NB, and SVM classifier were examined. The
results when trained on the Airline, Dataset3, and Stanford dataset
is shown in figures 11, 12, and 13, respectively. The findings that
were found are discussed later in this section.

Experimental Configuration
In this experiment set, the Airline, Dataset3, and Stanford datasets

were used as training data. The Stanford dataset was used as the
test dataset. The classifiers included in this experiment set follow:
MaxEnt, NB, and SVM. Stopwords were removed. Symbols were
not removed. The varied emoticon lists are as follows: an empty
list (no emoticons are replaced), the small emoticon list, and the
extended emoticon list.

Findings

• Finding a): When the Airline dataset is used as the training
data, the accuracy is generally lower than when the other
datasets are used as training data.

• Finding b): Emoticons appear to affect the SVM classifier
more significantly than the other classifiers. The greatest

Figure 10: Emoticon analysis on NLP-based classifier. Test-
ing data: Stanford, and Development data: 5FCV.

Figure 11: Emoticon analysis on MaxEnt, NB, and SVM clas-
sifiers. Training data: Airline, and Test data: Stanford.

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

Figure 12: Emoticon analysis on MaxEnt, NB, and SVM clas-
sifiers. Training data: Dataset3, and Test data: Stanford.

Figure 13: Emoticon analysis on MaxEnt, NB, and SVM clas-
sifiers. Training data: Stanford, and Test data: Stanford.

accuracy difference the SVM classifier faces as a result of the
emoticon set difference can been seen in figure 13; that is,
when the Stanford dataset is used as training data, there is a
~18% between the accuracy of the SVM classifier when using
the extended emoticon list vs. the small emoticon list.

• Finding c): Compared with the findings in the later section
5.9.5, the emoticon sets in this experiment set affect the
accuracy of the classifiers more significantly. This may be
because the Stanford dataset’s test data is used to evaluate
the accuracy instead of 10FCV.
– There is no obvious explanation as to why this is the case.
Upon examining tables 11 and 12, there was no clear link
between the emoticon statistics of the datasets and the
performance results.

• Finding d): What also cannot be explained is why the SVM’s
performance is best when using the extended emoticon set
and trained on the Stanford dataset, while when trained on
the Dataset3 and Airline datasets, the SVM performs best
without any emoticon replacements (the empty set).

5.9.4 Effects of Emoticons using All Datasets and 10FCV Test Data.
This experiment is identical to the experiment detailed in 5.9.3, but
instead of using the Stanford dataset’s test data, 10FCV is used to
create the test data.

Findings

• Finding a): Results of this experiment set revealed that the
MaxEnt, NB, and SVM classifiers each obtained at least 99.9%
accuracy on all three datasets for each set of emoticons.
There is, however, one case where the NB classifier obtained
less than 99.9% accuracy; that is, when trained using the
Airline dataset, the NB classifier obtained 92.0%, 91.8%, and
92.0% when using the empty, extended, and small emoticon
lists, respectively. This accuracy decrease for the NB classifier
may be due to the following reasons:
– Since 10FCV validation was used to create the test data,
the test data shares the same domain as the training data,
which means the domain of the Airline dataset cannot be
attributed to the observed behavior.

– The small size of the Airline dataset.
– The additional class/label in the Airline dataset that is not
present in the other datasets; that is, the Dataset3 and
Stanford dataset only have positive and negative tweets,
while the Airline dataset includes neutral tweets.

– NB may also be more sensitive to smaller training datasets
compared to the MaxEnt and SVM classifiers.

– More experimentation is required to confirm these hy-
potheses.

• Finding b): similarly to the results detailed in section 5.9.3,
the emoticon list appears to have little effect on the accuracy
of the classifiers.
– The only thing that is different from this experiment set
and the experiment set detailed in section 5.9.3, which
shows that the emoticon set can affect the accuracy, is
the use of 10FCV validation to create the test data. More
research is required to find out why this is the case.

5.9.5 Effects of Emoticons on All Classifiers. In this experiment set,
the emoticon list used to replace emoticons with their template
words were varied for the Airline and Dataset datasets, and the
effects on each classifier were examined. The results when trained
on the Airline dataset are shown in figures 14 and 15, and those

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

Figure 14: Emoticon analysis on each classifier (develop-
ment data is used to test the classifiers for these results).
Training data: Airline, Test data: 10FCV, and Development
data: 5FCV.

trained on the Dataset3 dataset are shown in figures 16 and 17. The
findings are discussed later in this section.

Experimental Configuration
In this experiment set, the Airline, and Dataset3 were used as

training data. 10FCV was used to create the test dataset. 5FCV was
used to create the development data. The classifiers included in
this experiment set follow: Fusion, MaxEnt, NB, SVM, and NLP-
based. Stopwords were removed. Symbols were not removed. The
varied emoticon lists are as follows: an empty list (no emoticons
are replaced), the small emoticon list, and the extended emoticon
list.

The hypothesis was that the extended emoticon dataset would
significantly improve the performance of classifiers using the
Dataset3 dataset (compared with only using the small emoticon
dataset), since when using the extended emoticon dataset 2251 (1529
+ 722) emoticons were detected instead of 41 (1 + 40) emoticons
when using the small emoticon dataset (see section 5.9.1 and table
11 for more details).

Findings

• Finding a): The emoticon set has an insignificant effect on
the accuracy of the classifiers; that is, the greatest accuracy
difference is only 0.4% for all classifiers on both the Airline
and Dataset3.
– It seemed strange at first, but these results do make sense.
Observing the relative frequency of the emoticons (shown
in table 12) reveals that at most there are only ~2.2% of
tweets with emoticons for Dataset3 using the extended
emoticon list. In other words, since all other cases result
in fewer than 2.2% of tweets with emoticons, it is not
surprising that the accuracy did not change much from
varying the emoticon sets.

Figure 15: Emoticon analysis on each classifier (test data is
used to test the classifiers for these results). Training data:
Airline, Test data: 10FCV, and Development data: 5FCV.

Figure 16: Emoticon analysis on each classifier (develop-
ment data is used to test the classifiers for these results).
Training data: Dataset3, Test data: 10FCV, and Development
data: 5FCV.

– However, the above hypothesis does not really apply to
the results discussed in section 5.9.3; therefore, nothing
significant can be concluded about the emoticon sets and
their effects on accuracy.

5.10 Sources of Error
This section summarizes sources of error that may have had an
effect on performance results:

• NLP-based Implementation: [9] included the ‘ner’ param-
eter in the command line call to the Stanford CoreNLP library

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

Figure 17: Emoticon analysis on each classifier (test data is
used to test the classifiers for these results). Training data:
Dataset3, Test data: 10FCV, and Development data: 5FCV.

API, while this parameter was mistakenly not included in the
implementation on the present work. As a result, there may
be differences between the implementation of the NLP-based
approach of the present work and [9].

• NBFeatures: NB assumes that the features are conditionally
independent, but this is not true for the bigram features,
which were used with the NB classifier in the present work.
This may have hindered the results.

• Neutral Tweets and the Stanford Dataset: Note that for
Stanford dataset, since the training data contained no neutral
tweets, neutral tweets were removed from the Stanford test
data when evaluating classifiers that were training using the
Dataset3 or Stanford dataset. However, in the details pro-
vided by [9], they in fact had neutral tweets in their Stanford
training data. This inexplicable difference may lead to dif-
ferent results. It is unclear how [9] obtained neutral tweets,
since they claim they were using the Stanford dataset that
was created in [12], and [12] explicitly stated their training
data did not contain any neutral tweets.

• Lack of the Q Diversity Measure: There may have been a
source of error when reproducing the Fusion model results,
since the present work did not use the Q measure to diver-
sify classifiers (for implementation simplicity reasons, the Q
statistic was not implemented).

• MaxEnt’s Perfect Performance: Although it was exciting
to see that the MaxEnt classifier predicted every tweet’s
polarity perfectly, it was worrying, since classifiers rarely
perform this well. Furthermore, the accuracy results of the
MaxEnt classifier found in [9] and [12] were not 100%. This
suggested the perfect accuracy of the MaxEnt classifier may
have been due to an implementation bug. It was not obvious
that such a bug existed; however, since even when the classi-
fier was run in the command line using the Stanford CoreNLP
library’s command line API, the accuracy was also perfect.

To determine the cause of the suspected error, invalid test
data instances were purposefully added into the test data to
see if the MaxEnt classifier would produce incorrect predic-
tions. In the Stanford dataset’s test data, labels of the positive
tweets were replaced with negative labels. As suspected, the
MaxEnt classifier still obtained 100% accuracy, which means
either the command used to run the classifier was incorrect,
the library’s configuration was incorrect, or the library had
a bug in its API. Furthermore, this bug also suggests that
the results found in this paper may be inaccurate, since if
the MaxEnt classifier had a bug, then NB and SVM may also
have had a bug.

• Non-ASCII Characters: The Stanford CoreNLP library fails
to deal with tweets that are exclusively non-ASCII characters
and empty strings. Since this had not been realized sooner,
some of the experimental results included this bias, but it is
not clear which experiment may have suffered (non-ASCII
characters were later removed from the dataset in the ex-
periments later performed). When computing the average
sentiment of each sentence of a tweet, if a tweet exclusively
contained non-ASCII characters, then the tweet would be
treated as if it had no sentence. This was also the case for
empty tweets, the Stanford CoreNLP library would not pro-
vide any sentiment, but in the implementation of the present
work, the implementation ignored tweets that were empty
after normalization. As a result, the implementation would
find an average sentiment score of 0 and would interpret this
as negative (see table 1). To examine the impact of this bias,
the number of tweets of each dataset that contained only
non-ASCII characters (white-spaces includes) were counted.
The Airline and Dataset3 datasets had no such tweets, and
in the Stanford dataset, there was only a single tweet (a com-
pletely non-English tweet). The non-ASCII tweet is positive.
Since this bias is insignificant, the effects a purely non-ASCII
tweet had on the other classifiers used in the experiments
was not investigated. The bias was therefore not significant,
but for completeness it was discussed in this section.

• NLP-based Emoticon Analysis Bias: In the experiment
detailed in section 5.9.2, each normalized dataset should have
had no symbols removed; however, the Stanford dataset’s
test data that was used had the character ‘.’ removed from
each tweet accidentally when both the Stanford and Dataset3
datasets were used as training data. When using the Airline
dataset as training data, the ‘.’ was not removed (as desired)
from the Stanford test data.

• Stopwords andWordswith SentimentalValue: Although
the point of the stopword list was to remove words that oc-
cur frequently and do not bring much analytical meaning to
a sentence, there are words that can have sentimental value
depending on the context; for example, the word ‘like’ is
among the stopwords used in the experiments. When the
word is used in the following context: ‘This movie is like the
next movie.’, it arguably holds less sentimental value than
when used in this context: ‘I like this movie.’. Therefore, re-
moving stopwords that contain sentimental value is a source
error in the experiments conducted in the present work.

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

5.11 Summary
This section summarizes the important results and conclusive re-
marks that can be made from analyzing the experimental results of
the present work.

Airline Dataset

• When the Airline dataset was used to train the classifiers,
generally the performance of these classifiers was lower
than when the classifiers were trained using the Dataset3
and Stanford datasets. This was most likely the case because
of one of more of the following:
– The Airline dataset was smaller than the other datasets,
which means the classifiers had less training data.

– The Airline dataset only had one domain (airline-focused
tweets) instead of a variety of domains (the Dataset3 and
Stanford datasets include more domains than the Airline
dataset).

– The additional class/label in the Airline dataset that was
not present in the other datasets; that is, the Dataset3 and
Stanford dataset had only positive and negative tweets,
while the Airline dataset included neutral tweets.

• The performance of classifiers was generally better when
the testing data was created using 10FCV compared with
when using the Stanford dataset’s test data. This was most
likely due to the test data being from the same domain as
the training data’s domain when using 10FCV.

Classifier Performance

• TheMaxEnt classifier performed perfectly in all experiments;
this should be taken with a grain of salt (see section 5.10).

• The Fusion classifier performed exceptionally well in all
experiments, as it has at least 99% accuracy in all experiments,
although since it included the MaxEnt classifier most of the
time, its results should also be taken with a grain of salt.

• On average, the performance of the classifiers can be sum-
marized from best to worst in the following order: MaxEnt,
Fusion, NB, SVM, and NLP-based.

• The SVM classifier was the classifier that had the most va-
riety in its accuracy. It can be reasoned that the SVM was
more sensitive to changes in data distributions (especially
training data) than the other classifiers.

• The NB classifier performed well using the Dataset3 and
Stanford datasets as training data, and performed slightly
worse when using the Airline dataset as training data.

Effects of Stopwords and Symbols

• It is difficult to conclude anything significant about the ef-
fects of the presence of stopwords and symbols, due to the
limited number of experiments and since the effects vary
across datasets. Remarks that can be made are as follows:
– The effects on the NB model are not clear for each dataset.
– The SVM model, when using the Airline dataset, performs
better when stopwords are removed and symbols are kept
than when stopwords are kept and symbols are removed.
When using the Dataset3 or Stanford dataset as training
data, the opposite was the case.

– Stopwords and symbols have little effect on performance
when using 10FCV to create the test data for each dataset.

– Stopwords can in fact have some form sentimental value
when used by a classifier.

– Symbols can affect the performance results.
Effects of Emoticons
• Emoticons and their effects on performance are generally
not clear.
– Using the Stanford dataset’s test data and varying the
emoticon set produced accuracy differences for the SVM
classifier only. The other classifiers are not affected.

– In a similar experimental configuration, if instead the test
data was created using 10FCV, then no effects on accu-
racy can be observed for any classifier when varying the
emoticon set.

– One of the experimental results suggested that the NLP-
based approach benefits from using the extended emoticon
set over the empty set, although the accuracy increase was
only 0.5%.

Result Reproduction
In terms of reproducing the results of previous works found in

table 4, below are the findings:
• MaxEnt: reproducing the MaxEnt results failed due to an
unknown bug.

• NB: In the same experiment as the one detailed below in
the SVM bullet, 100% accuracy was achieved with the NB
classifier. However, there are doubts about the correctness
of this accuracy result, since the MaxEnt had a bug.

• SVM: the best accuracy obtained, when the training data
and testing data were from the Stanford dataset, was 82.2%
accuracy when stopwords were kept and symbols were re-
moved (see figure 8). In fact, 82.2% accuracy was also the
best accuracy found for the SVM classifier in the previous
works.

• NLP-based: the best accuracy obtainedwas 58.8%when using
the Stanford dataset (see table 9). This was an improvement
on the accuracy that [9] obtained (55.14%), although, their
best accuracy on a dataset (Movie), which was not used in
the present work, was 59.66%.

• Fusion: Due to time constraints, the exact Fusion model
experiments performed in [9] could not be reproduced; that
is, the experiments of the present work did not include all
classifiers into the Fusion model using the Stanford dataset.
Also, since the MaxEnt classifier had a bug (and potentially
NB as well), most of the Fusion model results found in this
paper cannot be trusted. However, what can be concluded
is that the Fusion model does depend on the diversity of
its classifiers’ predictions; that is, just because a classifier
performs well does not mean when it is included in the
Fusion model the Fusion will perform as accurately.

6 CONCLUSION
The present work investigates performing sentiment analysis on
Twitter data. The challenges that present themselves when perform-
ing Twitter sentiment analysis include the label sparsity problem,
the variety of domains in the Twitter data, the sentiment drift prob-
lem, the unstructured grammar and limited length of tweets, the
class ratio skew, and feature selection.

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

The present work recreated some of the experiments performed
in [12] and [9]. The goal was to reproduce some of their results
using the Stanford dataset. The classifiers used in the experiments
of the present work include Maximum Entropy, Naive Bayes, Sup-
port Vector Machine, a natural language processing (NLP)-based
approach used in [9], and a Fusion model proposed by [9]. The
datasets used are the Airline, Dataset3, and Stanford datasets.

The experiments conducted in the present work investigate clas-
sifier diversity and its effects on the Fusion model’s performance,
a classifier performance analysis and k-fold cross valiation, and
the effects that emoticons, stopwords, and symbols have on the
performance of each classifier.

Results

• The diversity of the classifiers’ predictions had an impact on
the Fusion model’s performance; that is, the Fusion model’s
performance was not necessarily as good as its best perform-
ing classifier.

• The effect of emoticons on performance is not clear, although
some experiments did reveal some classifiers can be affected
by emoticons.

• The presence of symbols and stopwords had a small effect
on some of the performance results, but the results are not
significant enough to draw any strong conclusions. Never-
theless, it can be concluded that stopwords do in fact have
some form of sentimental value, and that the presence of
symbols can affect performance results.

• The average performance of classifiers is negatively affected
when using the Airline dataset as training data instead of
the Dataset3 or Stanford datasets. This was most likely due
to the small size of the Airline datasets, its narrow domain,
and the fact it had three sentiment classes (positive, neutral,
and negative) instead of two classes.

• The accuracy results found in [12] and [9] for the SVM and
NLP-based classifiers using the Stanford dataset were able to
be reproduced (within a small margin of error) in the present
work’s experiments.

Future Work

• Varying the use of the bigram and unigram features to see
the effects on the performance. Specifically, analyzing the
effects on NB would be of particular interest, since the uni-
gram feature satisfies the feature conditional independence
assumption of NB (bigrams do not respect this constraint).

• Investigating what went wrong with the MaxEnt classifier
(it had 100% accuracy in each experiment).

• Conducting experiments with additional test datasets (in-
stead of only using 10-fold cross validation or the Stanford
dataset).

• Running the SVM using the SVMLight library instead of the
Stanford CoreNLP library or using feature presence instead
of frequency, as suggested by [12]. It was not efficiently
implemented in the present work.

• Analyzing the sentiment of the stopword list used in the
experiments of the present work would be interesting, since
it may help to further analyze and understand the results
found in the present work. For example, there may be many
neutral stopwords, which could be the reason of the relatively

poor performance when using the Airline dataset compared
with using the other datasets (the other datasets do not have
neutral tweets).

• Performing experiments that investigate the performance
effects of varying the classifiers’ parameters (since these
parameters remained static throughout the experiments).

• Reproducing the experiments that included the NLP-based
approach and adding the ‘ner’ parameter to the command
that calls the Stanford CoreNLP library’s API.

REFERENCES
[1] [n.d.]. Stanford Twitter Sentiment Dataset. https://www.kaggle.com/kazanova/

sentiment140/data. Accessed: 2020-02-17.
[2] [n.d.]. Twitter Sentiment Dataset. https://www.kaggle.com/imrandude/twitter-

sentiment-analysis. Accessed: 2020-02-17.
[3] [n.d.]. Twitter US Airline Sentiment Dataset. https://www.kaggle.com/

crowdflower/twitter-airline-sentiment. Accessed: 2020-02-17.
[4] Salha M Alzahrani. 2018. Development of IoT mining machine for Twitter

sentiment analysis: mining in the cloud and results on the mirror. In 2018 15th
Learning and Technology Conference (L&T). IEEE, 86–95.

[5] Felipe Bravo-Marquez. 2017. Acquiring and Exploiting Lexical Knowledge for
Twitter Sentiment Analysis. Ph.D. Dissertation. University of Waikato.

[6] Nadia FF Da Silva, Eduardo R Hruschka, and Estevam R Hruschka Jr. 2014. Tweet
sentiment analysis with classifier ensembles. Decision Support Systems 66 (2014),
170–179.

[7] Chintan Dedhia and Jyoti Ramteke. 2017. Ensemble model for Twitter sentiment
analysis. In 2017 International Conference on Inventive Systems and Control (ICISC).
IEEE, 1–5.

[8] Mitali Desai and Mayuri A Mehta. 2016. Techniques for sentiment analysis
of Twitter data: A comprehensive survey. In 2016 International Conference on
Computing, Communication and Automation (ICCCA). IEEE, 149–154.

[9] Mehdi Emadi and Maseud Rahgozar. 2019. Twitter sentiment analysis using fuzzy
integral classifier fusion. Journal of Information Science (2019), 0165551519828627.

[10] Crowd Flower. [n.d.]. Data for everyone. https://www.figure-eight.com/data-
for-everyone/

[11] Manoochehr Ghiassi and S Lee. 2018. A domain transferable lexicon set for
Twitter sentiment analysis using a supervised machine learning approach. Expert
Systems with Applications 106 (2018), 197–216.

[12] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification
using distant supervision. CS224N project report, Stanford 1, 12 (2009), 2009.

[13] Michel Grabisch. 1995. A new algorithm for identifying fuzzy measures and
its application to pattern recognition. In Proceedings of 1995 IEEE International
Conference on Fuzzy Systems., Vol. 1. IEEE, 145–150.

[14] Michel Grabisch. 2000. Fuzzy integral for classification and feature extraction.
Fuzzy Measures and Integrals: Theory and Applications 1 (2000), 415–434.

[15] Michel Grabisch, Ivan Kojadinovic, and Patrick Meyer. [n.d.]. Kappalab R library
documentation. https://cran.r-project.org/web/packages/kappalab/kappalab.pdf

[16] Stanford NLP Group. [n.d.]. Class ColumnDataClassifier Java Docs.
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/
ColumnDataClassifier.html

[17] Stanford Natural Processing Group. [n.d.]. Stanford Classifier. https://stanfordnlp.
github.io/CoreNLP/

[18] Ammar Hassan, Ahmed Abbasi, and Daniel Zeng. 2013. Twitter sentiment
analysis: A bootstrap ensemble framework. In 2013 International Conference on
Social Computing. IEEE, 357–364.

[19] Shinnosuke Himeno andMasaki Aono. 2017. Tweet polarity classification focused
on positive and negative term frequency ratio. In 2017 International Conference on
Advanced Informatics, Concepts, Theory, and Applications (ICAICTA). IEEE, 1–5.

[20] Soudamini Hota and Sudhir Phatak. 2018. KNN classifier-based approach for
multi-class sentiment analysis of twitter data. International Journal of Engineering
and Technology (2018).

[21] Mohammad Rezwanul Huq, Ahmad Ali, and Anika Rahman. 2017. Sentiment
analysis on Twitter data using KNN and SVM. IJACSA) International Journal of
Advanced Computer Science and Applications 8, 6 (2017), 19–25.

[22] Diana Inkpen. [n.d.]. Information Retrieval Stop Words. http://www.site.uottawa.
ca/~diana/csi5180/StopWords

[23] Thorsten Joachims. [n.d.]. SVM-Light Support Vector Machine. http://svmlight.
joachims.org/

[24] John D Kelleher, Brian Mac Namee, and Aoife D’Arcy. 2015. Fundamentals of
Machine Learning for Predictive Analytics. , 267 and 400–410 pages.

[25] Vishal Kharde, Prof Sonawane, et al. 2016. Sentiment analysis of twitter data: a
survey of techniques. arXiv preprint arXiv:1601.06971 (2016).

[26] Patrick Killeen. [n.d.]. Twitter sentiment analysis project source code. https:
//github.com/patkilleen/twitter_sentiment_analysis

https://www.kaggle.com/kazanova/sentiment140/data
https://www.kaggle.com/kazanova/sentiment140/data
https://www.kaggle.com/imrandude/twitter-sentiment-analysis
https://www.kaggle.com/imrandude/twitter-sentiment-analysis
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
https://cran.r-project.org/web/packages/kappalab/kappalab.pdf
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/ColumnDataClassifier.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/ColumnDataClassifier.html
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
http://www.site.uottawa.ca/~diana/csi5180/StopWords
http://www.site.uottawa.ca/~diana/csi5180/StopWords
http://svmlight.joachims.org/
http://svmlight.joachims.org/
https://github.com/patkilleen/twitter_sentiment_analysis
https://github.com/patkilleen/twitter_sentiment_analysis

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

[27] Patrick Killeen. 2020. Knowledge-Based Predictive Maintenance for Fleet Manage-
ment. Master’s thesis. Université d’Ottawa/University of Ottawa.

[28] Akshi Kumar and Arunima Jaiswal. 2020. Systematic literature review of sen-
timent analysis on Twitter using soft computing techniques. Concurrency and
Computation: Practice and Experience 32, 1 (2020), e5107.

[29] Ludmila I Kuncheva, Christopher J Whitaker, Catherine A Shipp, and Robert PW
Duin. 2003. Limits on the majority vote accuracy in classifier fusion. Pattern
Analysis & Applications 6, 1 (2003), 22–31.

[30] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations. 55–60.

[31] Patrick Meyer. 2007. Progressive Methods in Multiple Criteria Decision Analysis.
Ph.D. Dissertation. Springer.

[32] Kahlil Philander, Y Zhong, et al. 2016. Twitter sentiment analysis: Capturing
sentiment from integrated resort tweets. International Journal of Hospitality
Management 55, 2016 (2016), 16–24.

[33] Hassan Saif. 2015. Semantic Sentiment Analysis of Microblogs. Ph.D. Dissertation.
The Open University.

[34] Hassan Saif, Yulan He, Miriam Fernandez, and Harith Alani. 2016. Contextual
semantics for sentiment analysis of Twitter. Information Processing &Management
52, 1 (2016), 5–19.

[35] Boaz Shmueli. [n.d.]. Multi-Class Metrics Made Simple, Part I: Precision and
Recall. https://towardsdatascience.com/multi-class-metrics-made-simple-part-
i-precision-and-recall-9250280bddc2

[36] Nadia Felix F Da Silva, Luiz FS Coletta, and Eduardo R Hruschka. 2016. A survey
and comparative study of tweet sentiment analysis via semi-supervised learning.
ACM Computing Surveys (CSUR) 49, 1 (2016), 1–26.

[37] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[38] Stanford. [n.d.]. Deeply Moving: Deep Learning for Sentiment Analysis. https:
//nlp.stanford.edu/sentiment/

[39] Stanford. [n.d.]. StanfordCoreNLP pipeline class Java documentation.
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/
StanfordCoreNLP.html

[40] Stanford. [n.d.]. Using StanfordCoreNLP from the command line. https:
//stanfordnlp.github.io/CoreNLP/cmdline.html

[41] Manju Venugopalan and Deepa Gupta. 2015. Exploring sentiment analysis on
twitter data. In 2015 eighth international conference on contemporary computing
(IC3). IEEE, 241–247.

[42] Jorge Villegas, Carlos Cobos, Martha Mendoza, and Enrique Herrera-Viedma.
2018. Feature selection using sampling with replacement, covering arrays and
rule-induction techniques to aid polarity detection in Twitter sentiment analysis.
In Ibero-American Conference on Artificial Intelligence. Springer, 467–480.

[43] Hao Wang and Jorge A Castanon. 2015. Sentiment expression via emoticons on
social media. In 2015 ieee international conference on big data (big data). IEEE,
2404–2408.

[44] Wikipedia. [n.d.]. Support Vector Machine. https://en.wikipedia.org/wiki/Support-
vector_machinel

A STANFORD CORENLP LIBRARY
This section contains a few examples on using the Stanford CoreNLP
library via the command line.

A.1 Dataset Parsing and Formats
In order to run the classifiers offered by the Stanford CoreNLP
library’s command line API, the input datasets must be of the ap-
propriate format expected by the library. The Stanford CoreNLP
format is presented as follows:

• Each line in the file represents a data sample (a tweet in the
present work’s case)

• The label/class of the data sample is found at the beginning
of the line

• The sample’s data is found to the right of the label separated
by a tab.

Table 13: The extended emoticon set used in some of the
present work’s experiments.

Positive Negative Positive Negative
<3 :-(0:-3 </3
:-))-: O:-) >.<
:) :(d: S:
=) :(:b :S
:D =(:-b =L
:o))= =p :L
:] >:[:p \=
:3]:< :-p =\
:c) :-c :P /=
:> :c :-P =/
=] :-< >:P \:
8) >-: ;D /:
=) :< ;] :/
:} >: ;-] /-:
:^) :-[;) :-/
;^)]-: ;-) /:<
:-D :[:’) >:/
8-D]: :’-) \:<
8D :{ :-)) >:\
x-D }: :-J D-’:
xD ;(3:) v.v
X-D); 3:-) DX
XD :-|| }:) D=
=-D ||-: |;-) D;
=D >:(}:-) D8
=-3):< >:-) D:
=3 :’-(>;) D:<
B^D)-’: >:))’:
:-)) :’(0:3
0:-) 0:)
0;^)

The following is an example of a positive tweet that follows the
above format, where ‘4’ is the label that represents positive:

"4 I am happy. Hello World!"
Note that the double quotes are not part of data sample, they are

simply included for presentation purposes.

A.2 Running the NLP-based Approach Over
the Command Line

The command below will run the NLP-based approach using the
Stanford CoreNLP library’s command line interface:

java -cp ./lib/stanford-core-nlp/*
edu.stanford.nlp.pipeline.StanfordCoreNLP
-annotators tokenize,ssplit,pos,lemma,parse,sentiment
-file ./input/data.txt
-outputDirectory ./output/

, where each sentence in the file ./input/data.txt will be
parsed and their sentiment will be predicted. The output will be

https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2
https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2
https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html
https://stanfordnlp.github.io/CoreNLP/cmdline.html
https://stanfordnlp.github.io/CoreNLP/cmdline.html
https://en.wikipedia.org/wiki/Support-vector_machinel
https://en.wikipedia.org/wiki/Support-vector_machinel

University of Ottawa ’20, April 26, 2020, Ottawa, ON Killeen, et al.

written to the file ./output/inputFilePath.txt.xml in XML for-
mat, and ./lib/stanford-core-nlp/* is the class path to all the
Stanford CoreNLP library’s JAR files.

Note that instead of using an input file, the command line’s stan-
dard input can be used instead; that is, the user can interact with
the library via the command line by typing sentences (delimited by
‘.’, ‘!’, and ‘?’, for example). In this case the sentences’ sentimental
information (in XML format) will be output to the standard output
stream of the library (which will be displayed on the command line
in this example) instead of being output to a file. This can be done
using the command below:

java -cp ./lib/stanford-core-nlp/*
edu.stanford.nlp.pipeline.StanfordCoreNLP
-annotators tokenize,ssplit,pos,lemma,parse,sentiment
-stdIn

, where the -file and -outputDirectory arguments are omit-
ted, and the -stdIn argument specifies the input will come from
the standard input stream.

A.3 Running MaxEnt Over the Command Line
To run the MaxEnt classifier using the Stanford CoreNLP library’s
command line interface, the command below can be run:

java -cp ./lib/stanford-core-nlp/*
edu.stanford.nlp.classify.ColumnDataClassifier
-prop ./input/config.prop
-trainFile ./input/traindata.txt
-testFile ./input/testdata.txt

, where ./lib/stanford-core-nlp/* is the class path to all the
Stanford CoreNLP library’s JAR files, ./input/config.prop is the
properties file used to specify additional command line arguments
(for example, such as what feature to use), ./input/testdata.txt
is the test dataset, which is appropriately formatted (see section
A.1 in the Appendix), and
./input/traindata.txt is the training dataset file, which is also
appropriately formatted. The output of this command is sent to the
library’s standard output stream. The prediction output for each
tweet in the test dataset is displayed in the command line.

A.4 Running NB Over the Command Line
To run NB using the Stanford CoreNLP library’s command line in-
terface is very similar to running the MaxEnt classifier (which is
detailed in section A.3 of the Appendix). The only difference is the
additional -useNB argument. An example command is found below:

java -cp ./lib/stanford-core-nlp/*
edu.stanford.nlp.classify.ColumnDataClassifier
|-prop ./input/config.prop-trainFile ./input/traindata.txt
-testFile ./input/testdata.txt
-useNB

A.5 Running SVM Over the Command Line
To run the SVM classifier using the Stanford CoreNLP library’s
command line interface, the training (and testing, if 10-fold cross
validation is not being used) datasets must be first converted from
the library’s appropriate format (see section A.1) into SVMLight
format.

A.5.1 Converting the Training Data to SVMLight. To convert the
format of the training data into SVMLight, the following command
can be run:

java -cp ./lib/stanford-core-nlp/*
edu.stanford.nlp.classify.ColumnDataClassifier
-prop ./input/config.prop
-trainFile ./input/traindata.txt
-testFile ./input/testdata.txt
-printSVMLightFormatTo ./output/train-data.svml

, where ./lib/stanford-core-nlp/* is the class path to all the
Stanford CoreNLP library’s JAR files, ./input/config.prop is the
properties file used to specify additional command line arguments,
./input/testdata.txt is the test dataset, which is appropriately
formatted (see section A.1 in the Appendix), and
./input/traindata.txt is the training dataset file that will be
converted to SVMLight format, which is also appropriately for-
matted, and ./output/train-data.svml is the output file that
contains the training data parsed into SVMLight format. Note that
this command also unnecessarily runs the MaxEnt classifier using
the training and testing data, which is why the test dataset is re-
quired in the command. Although the test data is not necessary for
the goal of converting the training data to SVMLight, it is required
for the command to work.

A.5.2 Converting the Testing Data to SVMLight. Converting the
format of the testing data into SVMLight is similar to the command
(which is shown above) for converting the training data to SVM-
Light. The following command converts the test data into SVMLight
format:

java -cp ./lib/stanford-core-nlp/*
edu.stanford.nlp.classify.ColumnDataClassifier
-prop ./input/config.prop
-trainFile ./input/testdata.txt
-testFile ./input/testdata.txt
-printSVMLightFormatTo ./output/test-data.svml

, where the only two differences are that: a) the command ar-
gument -trainFile ./input/testdata.txt is specified, to in-
dicate that we want to convert the test data into SVMLight for-
mat, and the command line argument -printSVMLightFormatTo
./output/test-data.svml is used to indicate that the output
file that will hold the SVMLight-formatted test data is in the file
./output/test-data.svml.

A.5.3 Running the SVM. Lastly, once the input datasets are con-
verted into SVMLight, they can then be used to run the SVM via
the command line by using the following command:

Twitter Sentiment Analysis using Fuzzy Integral Classifier Fusion University of Ottawa ’20, April 26, 2020, Ottawa, ON

java -cp ./lib/stanford-core-nlp/*
edu.stanford.nlp.classify.ColumnDataClassifier
-prop ./input/config.prop
-trainFile ./output/train-data.svml
-testFile ./output/test-data.svml
-trainFromSVMLight true
-testFromSVMLight true

, where in this case the different arguments are: a) -trainFile
./output/train-data.svml, which specifies the SVMLight-formatted
training data input file path, b) -testFile ./output/test-data.svml,
which specifies the SVMLight-formatted testing data input file path,
c) -trainFromSVMLight true, which specifies we are training from
SVMLight-formatted training data, and d) -testFromSVMLight true,
which specifies we are training from SVMLight-formatted testing
data. The prediction output is sent to the library’s standard output
stream, and in this case is, it is therefore displayed on the command
line.

B ONLINE RESOURCES
This section summarizes a few useful online resources that were
helpful in the present work’s implementation.

B.1 Stanford CoreNLP
• The Stanford CoreNLP library can be download from here
[17].

• The web page [38] provides a demo on how to use the Stan-
ford CoreNLP library’s sentiment analysis module.

• The Java documentation of the command line interface of
the StanfordCoreNLP class, which provides the API to sen-
timent analysis and is used to implement the NLP-based
approach, can be found here [39].

• The Java documentation of the command line interface ColumnDataClassifier
class, which provides the API to run machine learning clas-
sifiers, can be found here [16].

• The website [40] provides a good tutorial on how to use the
Stanford CoreNLP library via the command line.

• [30] provide a detailed guide on using the Stanford CoreNLP
library.

B.2 Fusion Model and R Programming
• The Kappalab R programming library’s documentation can
be found here [15].

• [31] provides a good example on how to use the HLMS and
CFI algorithm using the Kappalab package from the R pro-
gramming library.

B.3 Other
• A tutorial on computing evaluation metrics for multi-class
classifiers can be found here [35]. It provides many examples
on how to compute recall, precision, f1-score, and other
metrics using a confusion matrix.

• The source code used in the present work, which is open
source, can be found here [26].

	Abstract
	1 Introduction
	1.1 Twitter
	1.2 Sentiment Analysis
	1.3 Contributions
	1.4 Paper Overview

	2 Background
	2.1 Challenges
	2.2 Literature Review
	2.3 Twitter Sentiment Analysis Using Fuzzy Integral Classifier Fusion

	3 Methodology
	3.1 Tweet Normalization
	3.2 Classifiers

	4 Implementation
	4.1 Libraries
	4.2 Classifiers
	4.3 Natural Language Processing-based Approach
	4.4 Fusion Model

	5 Experiments
	5.1 Experimental Setup
	5.2 K-fold Cross Validation
	5.3 Experimental Evaluation
	5.4 Datasets
	5.5 Classifier Configuration
	5.6 Experimental Reproduction
	5.7 Stopword and Symbol Removal Experiment
	5.8 Fusion Model and Classifier Diversity Experiment
	5.9 Emoticon Experiment
	5.10 Sources of Error
	5.11 Summary

	6 Conclusion
	References
	A Stanford CoreNLP Library
	A.1 Dataset Parsing and Formats
	A.2 Running the NLP-based Approach Over the Command Line
	A.3 Running MaxEnt Over the Command Line
	A.4 Running NB Over the Command Line
	A.5 Running SVM Over the Command Line

	B Online Resources
	B.1 Stanford CoreNLP
	B.2 Fusion Model and R Programming
	B.3 Other

