
1

Simulating Service Request Scheduling Using
CPU Scheduling Algorithms

Patrick Killeen

Abstract—Understanding how to best meet service request deadlines on time is important. Smart health is an example of an
application that meeting service request deadlines is important. This paper’s goal is to analyze the performance, that is maximizing the
number service request deadlines met, of CPU scheduling algorithms when used by a remote service provider for scheduling service
requests. My simulation implementation is done in Java. The simulation has a client that sends many requests to a service provider
over a simulated network connection. The requests are then scheduled and serviced. Upon receiving a response, the client logs the
results. The results are then analyzed. The results indicate that in some cases some algorithms perform better than other algorithms in
different contexts. The priority queue algorithm, for example, is found to have better performance, in terms of servicing high priority
requests, in a system context with mostly relaxed deadlines. The results suggest that in general, prioritizing requests that are about to
meet their deadline increases performance. Using the results of this paper, one can better choose a CPU scheduling algorithm for
meeting service requests on time depending on the task and system context.

Index Terms—service request,cpu,scheduling,java,service provider,algorithm,iot

F

1 INTRODUCTION

The goal of this paper is to gain insight on the nature of
meeting service request deadlines using CPU scheduling
algorithms. The results will help make sense of the strength
and weaknesses of the algorithms in different contexts,
which will give insight to software designers, helping them
decide what kind of scheduling algorithm should be used
given the system’s context and requirements.
This paper focuses on discussing and analyzing the results
of the simulations I ran using the implementation of a
simulated networked system I created (see Figure 1), which
involves servicing service requests before their deadline us-
ing CPU scheduling algorithms. I compare CPU scheduling
algorithms’ performances when used by a service provider
receiving a series of service requests over the network. The
performance measure I chose for comparing the algorithms
is the number of requests serviced before their deadline.
That is, an algorithm’s performance is better than another
algorithm’s performance if it services more requests by
their deadlines. I will also be discussing details about my
implementation, which I did using the Java programming
language. I simulate request servicing by running a simu-
lation of a network, client, service provider, and a request
scheduler. To compare the algorithms and get insight on
their performances I vary the context in which they are run.
I make sense of the results and discuss interesting things I
have noticed about the results found.

2 RELATED WORK

[1] focuses on scheduling service requests with the goal
of maximizing profit of the platform, which is based on

• The author is with the Master of Computer Science program of at the
University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
E-mail: pkill013@uottawa.ca

Fig. 1. UML Simple Class Diagram of Simulation Implementation

revenue and cost. My paper also focuses on scheduling
service requests, but the differences are my paper focuses
on scheduling using CPU scheduling algorithms and with
the goal of maximizing the number of requests serviced on
time.
[2] focuses on comparing CPU scheduling algorithms to
their proposed MIN-MAX algorithm, by analyzing various
performance measures on CPU process scheduling. My
paper similarly compares CPU scheduling algorithms, but
the differences are my paper only focuses on the perfor-
mance measure of meeting deadlines on time and instead of
measuring performance on processes serviced by a CPU,
this paper is measuring performance on service requests
processed by a service provider.

3 SMART CITY APPLICATIONS

There are many applications to meeting service request
deadlines on time. For example cost reductions in green



2

cloud computing [3]. Another example, [4] [5] mention
that multimedia data can be classified into two categories,
real-time and non-real-time. Real-time (or hard real-time)
multimedia data is sensitive to delays, while non-real-time
(or soft real-time) data isn’t. For example, when streaming
a video if there are delays then the video will lag, which is
much more unacceptable for the user-experience than if a
picture download takes a few more seconds to complete.
The video is thus real-time data and the picture is non-
real-time data in this example. The user-experience scenario
may be important to website owners who focus on trying to
create a more positive user-experience for their user base.
It may be mandatory that the deadline be met for some types
of requests. For example, in a fleet management system,
there may be a critical event that must be serviced on time
[6], such as an event indicating that there was (or going to
be) an accident. Another example could be a patient having
a heart attack and a service request must be serviced to
notify the hospital. Not meeting the critical service request
would have great consequences.
It becomes important to service requests on time as system
infrastructures begin to have costly consequences when
service requests aren’t met on time. Thus, with the rise
of Internet of Things (IoT) and applications such as smart
health, smart transport, etc., meeting service request dead-
lines will be critical and thus understanding service request
scheduling becomes important.

4 SIMULATION WORK

My simulation was implemented using the Java program-
ming language (see Figure 1 for a UML class diagram of
the system). I implemented a client and a service provider
as the nodes communicating over the network. The client
generates requests and sends them via a simulated network
connection to the service provider. The service provider
schedules the requests to be serviced and sends a response
once the work is done. The client logs the results.

4.1 Sources of Error

Upon completing my implementation, running simulations,
and analyzing the results, I noticed there are a couple
sources of error that could affect the results’ accuracy. One of
the sources of error I found is that I made the assumption the
Round Robin (RR) algorithm has no latency during context
switching. Usually RR has latency when context switching
[7]. Thus, the results I found make this assumption since it
didn’t occur to me to add context switching overhead dur-
ing implementation. I only realized this could be a source of
error upon finishing all the simulations, and observing the
results (see Appendix A, Figure 11,12, and 13). I noticed on
average the lower time quantum RR simulations had better
performance on average, which contradicted my hypothesis
that very small time quanta would have too much over head
from context switching too frequently, which should be the
case according to [7].
Another source of error I found is the relatively small
number of simulations I ran when analyzing averages of
each algorithm (see Appendix A, Figure 11,12, and 13). I
only ran 5 simulations for each algorithm in each context,

since running simulations for each algorithm and for each
context many times took at least half an hour. It would have
taken too much time to run many more simulation instances
to get better average results.

4.2 Implementation
I use Java as the language for implementing the simulation.
All the parameters of the simulation instances are specified
using a key-value pair XML configuration file, which I use
for varying the context (system state) parameters. I vary the
following contexts for comparing algorithms:

• Request average deadline (see Section 5.1): I varied the
average request deadlines from more relaxed to stricter
deadlines.

• Network connection latency (see Section 5.2): I varied
the latency/bandwidth from low to high.

• Request arrival frequency (see Section 5.3): I varied the
rate at which service requests are sent by the client from
few to many.

• Service provider request handling rate (see Section
5.4): I varied the rate at which requests, those next
in line to be serviced, are retrieved from scheduler’s
queue, from many requests per second to a few requests
per second. That is the service provider’s rate at which
it handles requests, simulating its resources available.

• Request average burst time: I varied the average
request burst times from short to long, which I don’t
discuss about in this paper since I didn’t find any
interesting results.

During the preprocessing phase I compute all the requests
along with their parameters by gathering the mean and
variances for the following parameters:

• Request deadline
• Service id (reference to request’s burst time)
• Priority
• Time between service request creation/sending

4.2.1 Client
The client is the component that sends requests to the
service provider at varying frequencies. The client computes
the time between sending each service requests. Once all the
requests have been created, they are all sent over the simu-
lated network connection at varying time intervals between
requests sent. Upon receiving a response, the client decides
if the request was met on time based on the response’s
arrival time and request’s sent time. The results are logged
into a log file using the comma-separated-value format.

4.2.2 Service Provider
The service provider initializes all services given a burst
time, such that the burst times are uniformly distributed be-
tween a burst time maximum and minimum. Upon service
request arrival the service provider looks up a service given
a service id, and determines the request’s burst time sending
the request to the scheduler (see Section 4.2.3). Impossible
requests are rejected immediately, which are requests with a
deadline smaller than their burst time. The service provider



3

services the next service request to be serviced (determined
by the scheduler) at a specified frequency (which simulates
the service provider’s computational resources). The service
provider simulates servicing requests by simply sleeping for
an amount of time determined by the request’s burst time,
which is done sequentially for each request received from
the scheduler. Once it wakes up, the service provider replies
to the client with a response associated to the request the
client initially sent over the simulated network connection
(see Section 4.2.4).

4.2.3 Scheduler
The scheduler determines the order in which service re-
quests are serviced by using the below CPU scheduling
algorithms.

• First in First Out (FIFO)/First Come First Serve: re-
quests that arrive first are serviced first [2] [7].

• Priority Queue (PQ): requests with higher priorities are
serviced first [2] [7]. See Appendix A, Figure 14 for an
example of my simulation’s priority queue scheduling.

• Shortest Job First(SJF): requests with smaller burst
times are serviced first [2] [7].

• Nearest Deadline First(NDF): requests that are closest
to not meeting their deadline are serviced first. That
is the requests with their burst time nearest to their
deadline.

• Round Robin(RR): requests are serviced for a spe-
cific amount of time (time quantum) before being pre-
empted, in which case they are placed back into the
scheduler’s request queue if they haven’t been fully
serviced yet [2] [7]. Note that I will be referring to the
RR algorithm with an arbitrary time quantum as such,
RR(x) where x is the length in milliseconds of the time
quantum.

4.2.4 Simulated Network Connection
The network connection is simulated via 2 communication
channels between client and service provider. Each channel
contains a service request buffer to simulate upstream and
downstream bandwidth. Each node on the end of the net-
work connection can send requests through its respectful
upstream channel and read incoming requests from the
downstream channel. The channels periodically flush the
request buffers to simulate bandwidth and latency. I used
a thread-safe queue as a synchronization mechanism to
ensure thread safety.

5 RESULTS

I will discuss the results I found from the simulation in-
stances and the conclusions I have drawn from them (if
any). I compare the results of each context by comparing
two simulation instances that have interesting results. I then
compare algorithms’ performance on average in different
contexts. Table 1 is the summary of the results of each algo-
rithm’s performance (number of request deadlines met) in
each context (see Section 4.2 for the context list) according to
all the simulation instances I ran when varying the context.
I compiled Table1 by digging through many result diagrams
that I haven’t included in this report.

TABLE 1
Summary of Algorithm Performances in Various Contexts

Context State High Decent Poor Horrible
RAD Relaxed PQ, RR, NDF, SJF - FIFO -
RAD Strict - PQ, RR, NDF, SJF FIFO -
NCL Low PQ, SJF, RR, NDF - FIFO -
NCL High - PQ, SJF RR, NDF FIFO
RABT Low RR NDF, SJF, PQ FIFO -
RABT High - NDF, SJF, RR PQ FIFO
SPRHR High PQ, SJF, RR, NDF - FIFO -
SPRHR Poor - PQ, SJF, NDF RR FIFO
RAR Low PQ, SJF, RR, NDF - FIFO -
RAR High - PQ, SJF RR, NDF FIFO

RAR: Requests’ Average Deadline
NCL: Network Connection Latency
RABT: Requests’ Average Burst Time

SPRHR: Service Provider Request Handling Rate
RAR: Request Arrival Rate

5.1 Deadline
5.1.1 Relaxed Deadline - Comparing PQ and NDF
I found interesting results when comparing two simulation
instances of the PQ and NDF algorithms in a context with
relaxed deadlines. Both algorithms perform similarly well,
servicing many requests on time (see Appendix A, Figure
6). Figure 2 illustrates that NDF serves most requests with
stricter deadlines and longer burst times, while PQ serves
requests with a variety of deadlines and burst times. Ap-
pendix A, Figure 7 illustrates s that PQ serves high priority
(low values) requests and starves the low priority (high
values) requests. This isn’t entirely desirable as PQ behavior,
since one of the objectives of a PQ is to service high pirority
requests without starving low priority requests [8].

5.1.2 Strict Deadline - Comparing PQ and NDF
In a context with stricter deadlines, both NDF and PQ lose
performance (see Appendix A, Figure 6), and the requests

Fig. 2. Deadline Variation, Deadline - Burst Time Plot



4

served are those with a shorter burst time (see Figure 2).
What I found interesting, is that PQ loses its effectiveness of
servicing high priority requests over low priority requests
(see Appendix A, Figure 7). According to [8] this is undesir-
able PQ behavior.

5.1.3 Varying Deadline - Comparing All Algorithms on Av-
erage

The results I found varying the deadline contexts suggest
that RR is the slightly better choice for a stricter deadline
context and SJF is the better choice for a more relaxed
deadline context (see Appendix A, Figure 12).

5.1.4 Findings

The results found in varying deadline contexts suggest that
if service request priorities are important, the PQ algorithm
should be used in a more relaxed deadline context, and it
shouldn’t be used in a stricter deadline context. In a context
with more relaxed deadlines, NDF serves most requests
with stricter deadlines and longer burst times, which is its
usual behavior according to the results found (see Section
5.1.1, 5.3.3 , and 5.4.1). What is worth noting is that in a
strict deadline context NDF behaves opposite of its usual
behavior. Instead, in a context with stricter deadlines NDF
performs better on mostly requests that have shorter burst
times and more relaxed deadlines.

5.2 Network Connection Latency

5.2.1 Low Latency - Comparing RR(25) and SJF

Both RR(25) and SJF algorithms perform well in a low
latency context (see Appendix A, Figure 8). What I found
interesting, according to results illustrated in Figure 3, is
that RR(25) is able to better service the requests with stricter
deadlines and longer burst times compared to SJF. SJF better
services the requests that have more relaxed deadlines and
lower burst times.

5.2.2 High Latency - Comparing RR(25) and SJF

According to the results shown in Appendix A, Figure 8, SJF
does better than RR(25ms) in a high latency context.

5.2.3 Varying Latency - Comparing All Algorithms on Aver-
age

According to simulation results shown in Appendix A, Fig-
ure 11, SJF is the better performing algorithm when latency
of the network is the varied parameter.

5.2.4 Findings

The results found regarding latency suggest that when
latency is high, SJF is the best candidate algorithm. In an
arbitrary latency context, when requests with more relaxed
deadlines and shorter burst times are prioritized, then the
SJF is the best candidate algorithm. In the case that requests
have stricter deadlines and longer burst times, RR(25) is the
best candidate.

Fig. 3. Latency Variation, Deadline - Burst Time Plot

5.3 Request Arrival Rate

5.3.1 Comparing SJF and NDF

According to the simulation results shown in Appendix A,
Figure 5 and Figure 4, both SJF and NDF perform well in
a context where the service request arrival rate is low, and
in a context with high request arrival rate SJF out-performs
NDF.

Fig. 4. Arrival Rate Variation, Deadline - Burst Time Plot



5

5.3.2 Varying Request Arrival Rate - Comparing All Algo-
rithms on Average

According to the simulation results shown in Appendix
A, Figure 13, SJF out-performs all the other algorithms
on average mostly in a relatively high request arrival rate
context. Most of the algorithms perform similarity when
there aren’t many incoming requests.

5.3.3 Findings

According to the results found regarding request arrival
rates, SJF performs best when requests have more relaxed
deadlines and lower burst times. This is similar to the
results discussed in Section 5.2.4. Furthermore, NDF per-
forms better when requests tend to have longer burst times
and stricter deadlines, which is similar to results found in
Section 5.1.4 and 5.4.1.

5.4 Service Provider Request Handling Rate

5.4.1 Comparing SJF and NDF

According to simulation results from Appendix A, Figure
9, both SJF and NDF perform well in a high request han-
dling rate context and equally as poorly when the service
provider’s request handling rate is poor. According to sim-
ulation results from Appendix A, Figure 10, SJF performs
the best when requests have more relaxed deadlines and
lower burst times (which is similar to the results discussed
in Section 5.2.4 and 5.3.3), and NDF tends to perform better
in contexts with stricter deadlines and longer burst times
(which is similar to the results discussed in Section 5.1.4
and 5.3.3).

6 SUMMARY AND CONCLUDING REMARKS

After running my simulations, although there may be some
sources of error that affect the accuracy of the results (see
Section 4.1), the results have given me insight into the
performance of various CPU scheduling algorithms when
used by a remote service provider to schedule service re-
quests. What I have concluded is that SJF tends to perform
best when requests have more relaxed deadlines and lower
burst times. On the other hand, NDF tends to service most
requests that have stricter deadlines and longer burst times.
Intuitively these results make sense. On average, I found the
SJF algorithm has better performance in most cases.
The most interesting results I have found running these
simulations is that in a strict deadline context, the PQ
algorithm may not be the best choice when it is important to
service requests with higher priorities before lower priority
requests. The PQ fails to serve mostly high priority requests
instead of the low priority requests in a strict deadline
context, which is contradictory to the nature of the PQ
algorithm (see Section 5.1.4). The results found give insight
into how scheduling can be accomplished in general. With
the results of this simulation, I envision future work on
the topic could involve a machine algorithm to classify the
context/state of the system to choose the most appropriate
scheduling algorithm in real-time, which is similar to the
research done in [9] and mentionned in [3].

REFERENCES

[1] Z. Liu, S. Wang, Q. Sun, H. Zou, and F. Yang, “Cost-aware cloud
service request scheduling for saas providers,” The Computer Jour-
nal, vol. 57, no. 2, pp. 291 – 293, 2014.

[2] K. Sukhija, N. Aggarwal, and M. Jindal, “An optimized approach
to cpu scheduling algorithm: Min-max,” Journal of Emerging Tech-
nologies in Web Intelligence, vol. 6, no. 4, pp. 420 – 422, 2014.

[3] J. Bi, H. Yuan, W. Tan, and B. H. Li, “Trs: Temporal request
scheduling with bounded delay assurance in a green cloud data
center,” Information Sciences, vol. 360, pp. 57 – 58, 2016.

[4] S. Kim, “Adaptive online processor management algorithms for
multimedia data communication with qos sensitivity,” International
Journal of Communication Systems, vol. 22, pp. 469 – 470, 2009.

[5] X. Hei and D. H. Tsang, “The earliest deadline first scheduling
with active buffer management for real-time traffic in the internet,”
In: Lorenz P. (eds) Networking ICN 2001. ICN 2001. Lecture Notes in
Computer Science, vol. 2093, pp. 45 – 54, 2001.

[6] ukasz Kruk, J. Lehoczky, K. Ramanan, and S. Shreve, “Heavy
traffic analysis for edf queues with reneging,” The Annals of Applied
Probability, vol. 21, no. 2, pp. 484 – 485, 2011.

[7] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts.
Hoboken New Jersey: Wiley, 2008.

[8] D. avdar, R. Birke, L. Y.Chen, and F. Alagzb, “A simulation frame-
work for priority scheduling on heterogeneous clusters,” Future
Generation Computer Systems, vol. 52, p. 44, 2015.

[9] C.-M. Tien, C.-J. Lee, P.-W. Cheng, and Y.-D. Lin, SOAP Request
Scheduling for Differentiated Quality of Service. Berlin Heidelberg:
M. Dean et al. (Eds.): WISE 2005 Workshops, LNCS 3807, Springer,
2005.

7 APPENDIX A

Fig. 5. Arrival Rate Variation, Request Spawn Time Plot



6

Fig. 6. Deadline Variation, Deadline Request Spawn Time Plot

Fig. 7. Deadline Variation, Priority Histogram

Fig. 8. Latency Variation, Request Spawn Time Plot

Fig. 9. Request Handling Rate Variation, Request Spawn Time Plot



7

Fig. 10. Request Handling Rate Variation, Deadline - Burst Time Plot

Fig. 11. Latency Variation Average Algorithm Comparison Plot, 5 Simu-
lation Iterations

Fig. 12. Deadline Variation Average Algorithm Comparison Plot, 5 Sim-
ulation Iterations



8

Fig. 13. Arrival Rate Variation Average Algorithm Comparison Plot, 5
Simulation Iterations

Fig. 14. UML Sequence Diagram of Priority Queue Simulation


