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Abstract

With the increasing trend of the Internet of Things, Big Data is becoming an issue
for modern data analytics. Big Data analytics is a popular research field that attempts
to manage all this data. MapReduce is a popular framework for solving problems that
are involved with huge datasets. The K-means clustering algorithm is an example of a
data analytics algorithm. A lot of research has been put into implementing K-means in
parallel using Hadoop’s MapReduce. IPKMeans and PKMeans are two algorithms that
attempt to run K-means in parallel using MapReduce. IPKMeans is an improvement of
PKMeans. This work runs experiments on theses two algorithms on a Hadoop cluster
and verifies the results and claims discussed in the paper that proposes IPKMeans.

1 Introduction

Computing and storage has become cheaper over the years. There is also more and more
data being created each day [11]. There is so much data that data analytics and knowledge
discovery is becoming more feasible [3]. However, standard data mining algorithms cannot
cope with this increasing amount of data [29]. This is pushing the Big Data analytics
research field [32].

Parallel computing can be used to speed up algorithms. To speed up an algorithm using
parallelism, it must be converted from serial to parallel. There are frameworks designed to
handle fault tolerance, distributed computing, synchronization, data storage and processing.
Hadoop MapReduce is an example of such a framework [17]. However, it isn’t always
straight forward how to convert a serial algorithm to parallel. For example, MapReduce is
a framework for processing Big Data in jobs, but it isn’t designed for many iterations [5].
K-means clustering algorithm [5] is based on iterations [22].

This paper paper compares two approaches that implement parallel K-means using
MapReduce, namely, PKMeans[38], and IPKMeans[18]. This paper is organized into the
following sections: Literature Review, Problem Statement, Hadoop Cluster Configuration,
Results, and Conclusion.
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2 Literature Review

2.1 Big Data

The growth of data creation is increasing at an exponential rate [11] [16]. Big Data is
becoming a problem for processing large amounts of data with limited processing power
[9][14]. Data mining algorithms need to be re-designed to handle such massive amounts of
data. Big Data analytics is the field of performing machine learning on Big Data. According
to [4], in Big Data there are three Vs, namely: Volume, Velocity, and Variety. Velocity
represents the speed at which the data is flowing(a fast data stream). Volume represents
the sheer size of the data. Variety represents the heterogeneous nature of the data, as
data is coming from many data sources. There are two more dimensions: Variability and
Complexity. Variability represents the difference of flow between data source. Complexity
must also be taken into account [4].

With all this data it allows us to acquire knowledge [3]. The trend of huge amounts
of data creation has encouraged the research field of Big Data analytics [6][10][32]. Big
Data leads to efficient storage and processing requirements [20] in a distributed manner
[9]. Therefore, efficient processing algorithms are required for analysing data [20]. Big
Data analytics can tackled by using parallelization [10]. For example by using the Hadoop
framework [16][31]. Clustering is an important aspect of Big Data analytics [31].

2.2 Data Mining and Clustering

Data mining consists of extracting knowledge and finding novelties from datasets by analysing
patterns among the data elements [8][31]. Clustering is a data mining technique [4] [3][29],
which is an unsupervised approach for finding outliers and grouping data together [9]. Clus-
tering a dataset partitions it into groups of similar data elements [8][11][12], such that each
group/cluster have data elements that are different from data elements in other clusters
[3][13] [16]. Clustering is a popular technique for trying to solve data analytics problems
[10][14]. It has applications such as information retrieval [16], stock exchange analysis [21],
opinion mining [28], and image pattern recognition [34]. Knowledge discovery using data
analytics can be divided into stages: data preprocessing, clustering the preprocessed data,
and analysing the results for interesting patterns [26]. It becomes more difficult to perform
data analytics as datasets become larger [11][13] [21][22][29] [35].

2.3 K-means

K-means algorithm is an efficient clustering algorithm [5] [7][12][33] [35][36]. K-means is one
of the most popular unsupervised clustering algorithms [6][5] [10][11][15] [18][23], because
of its simplicity and efficiency [12][14][31]. It can be used for clustering large datasets [15],
which can be made of structured or unstructured data [8]. It has many different applications
[7][23].

K-means attempts to cluster datasets into k clusters of similar elements [3]. It first
starts the initialization stage by choosing k centroids (the centers of clusters) at random
[22][25], and assigns each data element of the dataset to the nearest centroid using the
Euclidean distance. At the end of this stage a new set of k centroids are calculated by
taking average Euclidean distance of each data element within a cluster. This is done until
the centroids converge [18][4]. Most of the computations performed in this algorithm are
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distance computations, which are performed when comparing all data elements’ distance to
each of the centroids [5].

However, the k-means isn’t perfect, it has its limitations. It has trouble dealing with
outliers [11][25]. That is, the algorithm assigns each data element to a cluster, but it may
not make sense in some contexts to assign an outlier to a cluster. Furthermore, the resulting
clusters’s stability and accuracy are sensitive to the initial centroids chosen [36]. That is, the
resulting clusters will vary depending on the initial centroids chosen [22], and random initial
centroids prove to yield unstable cluster results [3][25]. Therefore, to optimize k-means, care
must be taken when choosing the initial centroids [12]. One of the bottle-necks in k-means
is the number of iterations [22]. The more iterations there are, the more the clusters will
converge at the cost of increased computations. As datasets becomes extremely large, k-
means begins to lack in performance [6] [15][33][35], and its results become unstable [11].
The larger the dataset, the more iterations that will be required for high quality clusters,
which will therefore take more computations [35]. Execution time could be improved using
parallelism [12].

2.4 Map Reduce

As we enter the Big Data era, a lot of research is put into MapReduce [14]. MapReduce
is a framework for processing Big Data [23] in parallel [7] [10][11] in a distributed manner.
Map Reduce is a framework proposed by Google for processing Big Data, which involves
storing, appending, and also running jobs seamlessly in a parallel, distributed, and fault
tolerant manner [17]. Apache’s Hadoop Map Reduce is written in Java and is open source
[3], which is a version of Google’s Map Reduce[15]. MapReduce has 2 phases, the Map
phase and the Reduce phase [3][16][37]. User defined map and reduce functions are used to
process key-value pairs as inputs [15]. Map Reduce partitions data into subsets during the
mapping phase, and assigns each partition to a worker machine to be processed [35]. Once
each worker has processed each partition, the results are combined in the reduction phase.
The framework was created to meet the requirements of Big Data, trying to make sense of
all these data available. It is a popular and is used by many companies. It can be deployed
to many 100s of machines for processing Big Data [3]. There is no data cached between
two consecutive MapReduce jobs [5]. There aren’t very many data mining algorithms that
are implemented using MapReduce [10]. The MapReduce jobs have a lot of I/O cost from
reading and upon job completion writing to the file system. Therefore, many iterations in
algorithms using MapReduce should be avoided when minimizing performance costs [33].

2.5 Hadoop Distributed File System

Hadoop framework also provides a distributed file system [10][15]. HDFS is in charge of
storing and processing large amounts of data on distributed nodes [16], creating replications
when necessary [3].

2.6 Parallel k-means using Map Reduce

For applying k-means to Big Data, k-means can be parallelized using MapReduce. There is a
difficulty when combining k-means with MapRecude. k-means uses iterations by definition
and Map Reduce doesn’t support iterations [5][30], since each MapReduce job has a lot
of I/O costs associated [30]. This suggests directly mapping k-means iterations to the
MapReduce jobs would prove to have low performance. There are many solutions in the
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literature that attempt to optimize k-means in a parallel environment running it in Hadoop’s
MapReduce in a variety of ways. Many works’ goals are to minimize the execution time
while maximizing cluster quality [13].

In the literature there are many solutions for implementing the k-means algorithm in a
parallel environment using Map Reduce such as [37], and [38]. [10] is a survey on k-means
clustering using MapReduce for Big Data. [32] uses genetic algorithm steps. [27] improves
serial Two-Phase K-means using Incremental k-means algorithm. [24] studies this problem
with real-time time-series data. There are many approaches proposed in the literature, such
as optimizing the initial centroids chosen, minimizing the number of k-means iterations,
minimizing the number of distance calculations, optimizing hardware configuration, outlier
removal, etc. [25] and [11] remove outliers in attempt to optimize k-means over MapReduce.

There are quite a few applications to parallel k-means over MapReduce. [28] proposes
an aspect based summary generation solution by mining opinions. [29] designs a k-means
over MapReduce algorithm and compares it to serial k-means for document datasets. [34]
implements k-means over MapReduce for image pattern recognition.

2.6.1 Initial Centroid Optimization

The following literatures attempt to optimize the initial centroids chosen: [3], [23], [4],
[33], [9], [11], [22], [31], [36], [26], and [12]. [4] optimizes the initial centroids using data
dimentionality density. [9] varies the centroids and data to optimize k-means. [12] optimizes
initial centroid choice using the PSO meta-heuristics, which improves cluster quality and
execution time. [11] uses two approaches, a), removing outliers from the datasets, and b),
automating the initial centroid selection. [22] uses Min-Max normalization technique to
choose better initial centroids, which requires assigning weights/priority to attributes of the
dataset. The work done by [31] achieves better accuracy than the traditional k-means by
taking averages of the dataset for better selecting the initial centroids. [36] compares their
algorithm, Adaptively Disperse Centroids K-means Algorithm to Mahout. [26] introduces
a preprocessing phase to compute the initial centroids, and then focuses on evaluation of
cluster quality using data preprocessing, clustering, and pattern recognition.

2.6.2 Minimizing k-means Iterations

[18] introduces a preprocessing stage to k-means over MapRecude using k-d tree, to allow
completion of the k-means algorithm in one MapReduce job. This work shows that with the
same centroid configuration, their approach is faster and produces similar cluster quality
compared to other literatures. [21] aims to optimize the execution time while keeping 80%
accuracy of clusters by reducing iterations. [23] demonstrates (via simulation) that their
work reduces the number of k-means iterations and increases the speed of the iterations.
This works does so by analysing the dataset’s distribution for initial centroid selection, and
dynamically chooses between the Euclidean distance and Manhattan distance algorithms
for comparing data element’s distances. [30] proposes a single-pass MapReduce job for
parallelizing k-means, called mrk-means. This work uses re-clustering and increases cluster
quality. [33] automatically determines the number of clusters that will be generated, and
only requires one MapReduce job, minimizing I/O cost to the file system.
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2.6.3 Minimizing Number of Distance Computations

[6] reduces the number of distance computations performed, and achieve the same results.
[5] reduces the distance computations using triangle inequality by using Extended Vector
and Bounds Files. They compare both the Extended Vector and Bound Files approaches
together. [8] carefully designs the Mapper and Reducer. Similarly, [7] attempts to reduce
the number of reads and write to disk by the Mapper and Reducer. [35] reduces the number
of iterations up to 30% and keeps up to 98% accuracy.

2.6.4 Optimiznig Hardware Configuration in Hadoop Environment

[15] explores the use of CPUs and GPUs using OpenCL to optimize k-means using MapRe-
duce. [17] analyses the performance when adjusting processor micro-architecture parame-
ters. [20] validates the importance of k-means over MapReduce by conducting experiments
and varying the number of nodes in Hadoop environment.

2.7 PKMeans

This algorithm is proposed by [38]. It runs K-means in parallel using MapReduce, by
running the point labeling and cluster center computations in MapReduce jobs, until the
centroids converge.

Mapping Phase PKMeans uses the map phase to label the points to their nearest
centroid, which can use any number of mappers. The input to the mappers is the dataset
of points and the centroids for the current iteration (the initial centroids are given to the
first MapReduce job). The output of the mapping phase is the labeled dataset, such that
each data point is labeled with the id of the nearest centroid.

Reduce Phase Let k be the number of initial centroids. At each iteration PKMeans
has a reducer, for each cluster, which computes the new centroid centers for its cluster. The
input to the reduce phase is the labeled data points from the map phase and the centroids
for the current K-means iteration. The output of the reduce phase is the set of new cluster
centers (centroids).

2.8 IPKMeans

This algorithm is proposed by [18]. IPKMeans attempts to improve the execution time
of the PKMeans algorithm. They compare the execution time and sum of squares error
(SSE) between IPKMeans and PKMeans. The SSE is the sum of errors for each point,
which is the distance from the target point to the actual point [19]. In this case the error is
the distance from a point to its cluster center. IPKMeans requires a pre-processing phase
and a post-processing, requiring multiple MapReduce jobs. They implement K-means in
parallel using MapReduce in three phases, namely: the data partitioning phase, the parallel
K-means phase, and the centroid merging phase.

2.8.1 Phase 1 - Data Partitioning

This phase builds a KDTree to partition the data set into subregions. A subregion is the set
of points found in a KDTree leaf. Once the subregions are created, IPKMeans labels points
from 1 to R, where R is the number of reducers. After labeling each subregion, subgroups
are formed as a results. A subgroup contains all points with the same label. This data
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partitioning scheme attempts to keep each subgroup representative of the original dataset’s
distribution. The input to this phase is the dataset, such that each point is labeled with a
subregion id, and the output of this phase are the points labeled with a subgroup id. This
phase is done in O(logN ) MapReduce jobs.

2.8.2 Phase 2 - Parallel K-means

This IPKMeans phase runs R instances of K-means in parallel, on each of the subgroups
obtained from phase 1 (see section 2.8.1). Since K-means finds k centroids, this phase will
produce R*K centroids found. This centroid set must be trimmed to only k centroids (see
phase 3 section 2.8.3). The map phase organizes each data point by subgroup. The input of
the map phase is the dataset labeled by subgroup and the output are the points organized
by subgroup. The reduce phase runs K-means on each of the subgroups. The output of the
reduce phase are the R*K resulting centroids.

2.8.3 Phase 3 - Centroid Merging

This phase can be done using one machine, since there are only R*K resulting centroids,
obtained from phase 2 (see section 2.8.2). The centroids must be processed to find the most
central centroid set. They refer to a central centroid set as set with the least average SSE.
The input to this phase are many centroid sets each with their average SSE. The output of
this phase are the k centroids found, the output of the IPKMeans algorithm.

3 Problem Statement

This work verifies the work done in [18], since there are a few points they make that raise
question. They claim to propose IPKMeans, which outperforms the solution proposed
in [38], PKMeans. They make a strong claim that they solve K-means using a single
MapReduce job using IPKMeans, while PKMeans requires many MapReduce jobs. This
claim is partially true. In a single MapReduce job K-means is executed in parallel, but it
isn’t completely solved using only one MapReduce job. They don’t make it clear that phase
1 of IPKMeans (see section 2.8.1) requires O(logN ) MapReduce jobs.

Another cause for evaluating their work is their experiments are done using a single
machine that ran a multi-threaded Hadoop environment. Hadoop by nature runs in a multi-
node environment, so their experiment results may have sources of error. The motivation
for verifying [18]’s work, is to see if their claims hold when tested in an actual Hadoop
cluster.

Some of their experiments lack test cases with large datasets. Since MapReduce is used
in the context of Big Data, their experiments should hold when stressed with large datasets,
but they only compare IPKMeans to PKMeans with a dataset of 3000 points. It isn’t clear
that their algorithm improves PKMeans when ran in a Big Data context.

4 Hadoop Cluster Configuration

The Hadoop cluster used to run the experiments discussed in this paper was configured
using Carleton University’s OpenStack cloud. OpenStack is an open source software tool to
create clouds[2], and was used to create virtual machines (VMs) of Hadoop nodes to create
a virtual Hadoop cluster. The VMs of the cluster were Bitnami VMs (obtained from [1]),
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which are pre-configured Linux VMs with Hadoop pre-installed. The Hadoop cluster used
to perform the experiments contained 10 Hadoop nodes, which were configured as follows
(see Figure 1):

1. Master Node: implements the Name Node service for managing the HDFS nodes,
and the Resource Manager service for scheduling MapReduce jobs on the slaves.

2. Slave Nodes: implements the Data Node service for HDFS storage, and the Node
Manager service for running MapReduce jobs

3. Client Node: implements Hadoop Hive service for deploying Hadoop jobs, and the
Secondary Name Node service as a backup Name Node service

4. Service Node: implements the Application Timeline Server to keep track of jobs

Figure 1: Hadoop cluster OpenStack virtual network diagram.

4.1 Hadoop Node Roles

The Client Node was used as the job deployment VM. By configuring OpenStack, SSH was
enabled for accessing only the Client Node. The virtual network was configured such that
the Client Node was the Hadoop cluster’s access point, and the rest of the nodes shown in
Figure 1 were only accessible from the Client Node. In total there were seven Slave Nodes,
which were each in charge of storing HDFS file segments and running MapReduce jobs.

In order to have the network communication between each node, they needed to exchange
SSH key-pairs before the cluster to be used. This allowed Hadoop services to communicate
with each other and run remote commands without the need of user interaction (a password
prompt).
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4.2 Environment

The VMs were spread out over multiple physical host machines. The Client Node and
the second Slave Node were hosted on the same physical machine, which had an Intel(R)
Xeon(R) CPU E5-2660 v4 @ 2.00GHz (dual 14-core, 56VCPU) CPU.

All the other Hadoop nodes of the cluster were spread out over five physical hosts
machines. Each of these hosts had an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz (dual
10-core, 40VCPU) CPU. Each virtual Hadoop node in the cluster had 1 core, 2GB of RAM,
and 16GB of disk space. For all slave nodes, the Java Virtual Machine instances for both the
mappers and reducers were allocated with 512MB of RAM. The OpenStack environment
was shared with many other OpenStack users of Carleton University.

5 Results

This work reproduces a subset of the experiments ran in [18]. For various experiment results
the SSE and execution time for IPKMeans and PKMeans are compared.

5.1 Experimental Datasets

[18] use five sets of initial centroids and a set of 3000 2-dimensional points, which have 3
clusters generated using a Gaussian distribution (see Figure 2-a). The reproduced dataset
is shown in Figure 2-b, which was used to run the experiments discussed in this paper.

5.1.1 Data Points

To reproduce the 3000-point dataset shown Figure 2-a, since [18] didn’t mention the mean
or variance of the clusters they generated, this work attempted to reproduce the dataset by
estimating the means and variances visually. The three cluster distribution estimations are
shown below in the expression 1, which take the form ci = {[µx, µy], [σx, σy]}, where ci is
cluster i, µd is the mean of ci’s dimension d, and σd is the variance of ci’s dimension d.

c1 = {[5, 4], [3, 3]},

c2 = {[13, 4], [3, 3]},

c3 = {[15, 15], [3, 3]}

(1)

It is worth noting that the estimation of variance was done poorly, since the points in
Figure 2-a are more scattered than the points in Figure 2-b. This was only discovered after
running all the experiments, and there wasn’t enough time to redo all the experiments with
datasets that were generated with a better estimated variance. This may be a source of
error to the experimental results found.

The experiments ran in this paper used 6 different randomly generated datasets (based
on a Gaussian distribution) of various dataset sizes, namely datasets of 3000, 6000, 12000,
21000, 84000, and 192000 points. Each dataset share the same distributions described
in expression 1 above, the only difference when they were generated was their size. The
datasets were generated only once, and were used in multiple experiments. The datasets
will be referred to in the rest of the paper as di, where i is the id of the dataset. The dataset
definitions are defined below in the expression 2:
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Figure 2: dataset with 3000 points and 5 groups of initial centroids marked by ’+’. Chart
a): IPKMeans dataset[18]. Chart b): reproduced dataset.

| d1 |= 3000

| d2 |= 6000

| d3 |= 12000

| d4 |= 21000

| d5 |= 84000

| d6 |= 192000

(2)

5.1.2 Initial Centroids

The initial centroids, the red crosses in Figure 2, used in the experiments discussed in this
paper were also estimated visually from Figure 2-a. They are described in the expression
3 below, where gi is the initial centroid group i, which each contain three 2-dimensional
points (the initial centroid coordinates).
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g1 = {(1, 1), (4, 4), (6, 6)}

g2 = {(4, 4), (11, 19), (16, 10)}

g3 = {(4, 4), (8, 14), (11, 6)}

g4 = {(2, 1), (10, 3.5), (16.5, 7)}

g5 = {(−4,−4), (11, 11), (21, 21)}

(3)

5.2 Experiments

The following sections discuss the experiments ran in this work and the results found. Some
experiments will be comparing the results found in this work to the results found in [18].
The following notation will be used to differentiate between the experiments done in this
work, and the experiments done in [18]: e1 denotes the experiment(s) ran in this work,
and e2 denotes the experiment(s) (if it was conducted) ran in [18]. That is, the following
sections will refer to e1 as the experiment, or experiments, associated to the section they
are mentioned in, and e2 as that section’s experiment, or experiments, ran in [18].

5.2.1 Reproducing IPKMeans Experiment — Initial Centroid Varying

This experiment varies the initial centroid groups, from g1 to g5, using the dataset d1, and
analyzes the comparison of execution time and SSE between PKMeans and IPKMeans.

Execution time The results of this experiment are displayed in Figure 3. The results
of e1 and e2 are similar. For most initial centroid groups (g1 to g4), the execution time
relationship between IPKMeans and PKMeans remains consistent (i.e. the results are the
same). That is, for both results of e1 and e2 given some gi, PKMeans is faster than
IPKMeans, or IPKMeans is faster than PKMeans. For the experiment using g1, IPKMeans
outperforms PKMeans; using g2, PKMeans outperforms IPKMeans; using g3, PKMeans
outperforms IPKMeans; and using g4, IPKMeans outperforms PKMeans.

However, the experiment using g5 is not consistent for e1 and e2. In e2 IPKMeans
outperforms PKMeans, and in e1 PKMeans outperforms IPKMeans. This may be caused
by a lucky K-means random centroid choice in one of the PKMeans iterations in e1. That
is, PKMeans in e1 may have gotten lucky and chosen a random centroid that enabled quick
convergence when one of its clusters was empty.

SSE The SSE results found for IPKMeans and PKMeans are quite similar for e1 and e2.
The SSE of IPKMeans is generally higher (less accurate) than PKMeans, since IPKMeans
attempts to optimize execution time at the expense of precision. See Table 1 below for the
SSE e1 results.

Initial Centroid Group g1 g2 g3 g4 g5
PKMeans 40698.09 17457.96 17457.93 40698.09 17457.93
IPKMeans 41107.72 17496.35 17496.35 40878.8 17496.35

Table 1: SSE PKMeans vs. IPKMeans, varying initial centroid group, dataset d1, 7 reducers,
and 10 hadoop nodes

Source of Error It is also worth mentioning that in e1, for the experiments using g4
and g5, the average execution time for both IPKMeans and PKMeans is significantly higher
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Figure 3: Varying initial centroid groups using dataset d1. Chart a): results from e2 [18].
Chart b): results from e1 using 7 reducers and 10 Hadoop nodes.

than the experiments using g1, g2, and g3 (see Figure 3-b). This may be due to a caching
performance issue with the Hadoop nodes. The experiments done for initial centroid groups
g1, g2, and g3 were done 2 weeks before g4 and g5. The cluster had been running for quite
a while in-between these experiments, and this may have created a caching issue in the
Hadoop nodes. There were network connection issues during the experiments, that caused
the Hadoop node communication to fail. The work around involved occasionally using the
linux command ’dhclient’, but this created an increasing number of persistent processes
that ran in the background, potentially stealing resources from the Hadoop nodes.

Another possibility for the differences in execution times could be the Hadoop nodes
were VMs of OpenStack. The VMs shared the host machine’s hardware, and therefore other
users may have also had VMs sharing the same hardware resources that the Hadoop nodes
were using. In that case, other users may have been running experiments concurrently with
the experiments of this paper, slowing down the execution time of e1 experiments.
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5.2.2 Varying Dataset Size

This experiment varies the dataset sizes (from d2 to d6), using initial centroid group g1,
and compares the execution time and SSE between IPKMeans and PKMeans. [18] doesn’t
compare IPKMeans to PKMeans when using greater dataset sizes.

Figure 4: Varying dataset size, initial centroids group is g1, 7 reducers, and 10 virtual
hadoop nodes.

Execution time The results of e1 are displayed in Figure 4, suggest that IPKMeans is
much slower than PKMeans as datasets become large. IPKMeans’ execution time increases
exponentially as the dataset size increases, while PKMeans’ execution time increases lin-
early. This experiment provides meaningful insight. When g1 was used in the experiments
discussed in section 5.2.1, IPKMeans outperforms PKMeans, but with many more points
PKMeans outperforms IPKMeans in e1.

SSE The SSE of PKMeans outperforms IPKMeans slightly (see Table 2 below), as
expected, and the SSE of both PKMeans and IPKMeans increase exponentially as the
dataset sizes increase.
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Dataset d2 d3 d4 d5 d6
Size 6000 12000 21000 84000 192000
PKMeans 34962.71 70563.29 123944.57 500175.87 1516701.15
IPKMeans 34999.86 70568.12 123953.05 668659.23 1139632.76

Table 2: SSE PKMeans vs. IPKMeans, varying dataset size, initial centroid set g1, 7
reducers, 10 hadoop nodes

Source of Error
The reason IPKMeans was completely outperformed by PKMeans (in execution time)

as the dataset sizes increased may be because of the distribution of points. For example, if
the data points were very sparse or if the data point dimensions were high, PKMeans may
have struggled compared to IPKMeans.

5.2.3 Varying Initial Centroid

By analyzing the results of the experiments discussed in section 5.2.2, another initial cen-
troid set may have had IPKMeans outperform PKMeans even with a large dataset. Upon
examining the charts in Figure 3, it shows that IPKMeans and PKMeans outperform each
other depending on the initial centroid set chosen. This experiment, e1, reproduces the
experiments mentioned in section 5.2.1, but it uses the dataset d5 instead of d1. e1 was
designed to answer the following question: is the initial centroid set responsible for dictating
which algorithm outperforms the other when ran on large datasets?

Execution time Figure 5 illustrates the results of e1, which suggest the initial cen-
troid’s have no effect on whether PKMeans outperforms IPKMeans when used on a large
dataset. PKMeans is approximately three times faster than IPKMeans. These results are
interesting since MapReduce is useful in the context of BigData, and if IPKMeans can
only outperform PKMeans on small datasets, then IPKMeans doesn’t improve PKMeans.
With small datasets, it may faster to simply run K-means serially which will most likely
outperform both PKMeans and IPKMeans.

By observing Figure 7 in the Appendix, which separates Figure 5 into two graphs, it
is shown that the initial centroids are still affecting the performance of both IPKMeans
and PKMeans. They greatly affect the execution time of both algorithms even when large
datasets are used. The initial centroid set g4 is the best for both algorithms when the
dataset d5 is used.

SSE The SSE of PKMeans outperforms IPKMeans in most cases (see Table 3 below),
as expected. What is interesting is when g4 is used, IPKMeans outperforms PKMeans.
This could be the case for example, because PKMeans converged to a local SSE minimum
centroid set, while IPKMeans found a global SSE minimum centroid set, since IPKMeans
has many centroids to choose from, from the Parallel K-means phase (see section 2.8.2).

Initial Centroid Group g1 g2 g3 g4 g5
PKMeans 500175.87 500175.87 668642.8 665060.06 665060.06
IPKMeans 668659.23 500188.39 666841.75 500188.39 665252.59

Table 3: Experiment e1: SSE PKMeans vs. IPKMeans while, initial centroid group, dataset
d5, 7 reducers, and 10 hadoop nodes

Source of Error
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Figure 5: Varying initial centroid groups, dataset d5, 7 reducers, and 10 virtual Hadoop
nodes.

The sources of error may be caused by the same sources of error discussed in section
5.2.2.

5.2.4 Varying Number of Reducers and Slave Nodes

In this experiment, d1 is the dataset used and the initial centroid group g1 is used. The
number of reducers and Hadoop nodes were varied, and the resulting SSE and execution time
between IPKMeans and PKMeans are analyzed. The number of slave nodes is increased
from two to seven.

The results shown in Figure 6 below and Figure 9 in the Appendix contradict the results
found in [18]. When they ran the same experiment, the execution time decreased and the
SSE increased as the number of reducers increased. In the results of e1, the execution time
increases and the SSE generally decreases as the number of reducers increase, but as the
number of reducers becomes large the SSE increases. This may be the case since e1 was
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run in an actual Hadoop environment, while e2 were ran on a single machine.

Figure 6: Execution time analysis when varying number of reducers and Hadoop nodes,
using initial centroids group g1 and dataset d1

Execution time Illustrated in the Figure 6, as the number of nodes increase in the
cluster, the execution time decreases for both IPKMeans and PKMeans. IPKMeans benefits
more from the number of nodes, most likely because it can take advantage of many reducers
in parallel, while PKMeans is limited to the k reducers in parallel. By looking at the case
of 32 reducers for IPKMeans in Figure 6, increasing the number of Hadoop nodes from
5 to 6 speeds up IPKMeans by a factor of 2. PKMeans doesn’t have a case where the
speed up is a factor on 2. This suggests that as the number of Hadoop nodes increase,
IPKMeans will benefit more than PKMeans since a huge number of reducers can be used
by IPKMeans. PKMeans can still make use of the number Hadoop nodes by increasing its
number of mappers.

IPKMeans does poorly compared to PKMeans with few Hadoop nodes as the num-
ber of reducers increase, but when there are many Hadoop nodes IPKMeans outperforms
PKMeans. This is interesting, since it suggests that when datasets become huge, adjusting
the configuration of Hadoop parameters (number of nodes, reducers, etc.) could enable
IPKMeans to outperform PKMeans, since it appears PKMeans’ speed-up converges more
more quickly than IPKMeans’ speed-up as the number of Hadoop nodes increase. It would
be interesting to see if IPKMeans could outperform PKMeans in the experiments discussed
in the sections 5.2.2 and 5.2.3, by increasing the cluster size and varying the number of
reducers.

SSE The PKMeans’ SSE didn’t change much as reducers increased, since for PKMeans
the number of reducers are fixed to k, where k is the number of clusters.

Illustrated in the Figure 9, the SSE of IPKMeans lowers as the number of reducers
increases. A local SSE minimum appears for a certain number of reducers depending on the
number of Hadoop nodes. As the number of reducers increase passed this optimal number,
the SSE starts increasing. This suggests there exists an optimal number of reducers given
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the number of Hadoop nodes in a cluster to minimize the SSE for IPKMeans. A better
example of this can be shown in Figure 8, where 11 reducers is the optimal number of
reducers for minimizing the SSE when using the dataset d6 and using g1.

Source of Error
The results of e1 may be quite different if e1 were conducted using each of the initial

centroid groups instead of only using g1.

6 Conclusions

Most of the claims made in [18] about their results were found to be correct, when their
experiments were reproduced in this work. IPKMeans does outperform PKMeans depending
on the initial centroids chosen when both algorithms are run on a normally distributed
3-cluster dataset with 3000 2-dimensional points. Some results found by [18] were not
reproducible by the experiments run in this work. They found the SSE increases as the
number of reducers increase, but this work has found that generally the SSE decreases as
the number of reducers increase. However, when the reducer count becomes large the SSE
does increase. This may be the case since [18] used a multi-threaded single machine Hadoop
environment, while this work used a multi-node Hadoop environment to run experiments.
As stated by [18], the SSE of IPKMeans tends to be worse compared to PKMeans for almost
all experiments run in this paper.

This work has also ran new experiments. IPKMeans was to found to be outperformed (in
execution time) by PKMeans with datasets larger than 3000 points. [18] ran experiments on
IPKMeans with 15000 points, but they didn’t include PKMeans in these experiments. With
a small Hadoop cluster PKMeans outperforms IPKMeans, but some experimental results
suggest IPKMeans could outperform PKMeans if the Hadoop cluster was large enough and
the Hadoop parameters were configured properly. IPKMeans can really take advantage of
the number of nodes in a cluster by increasing the number of reducers used to solve the
problem, while PKMeans is limited to k reducers, where k is the number of centroids.

The work done in this paper hasn’t fully explored the performance of PKMeans vs.
IPKMeans. The future research to be made could be to further compare IPKMeans to
PKMeans with a variety of datasets. Different datasets could be used by varying the
number of clusters, distribution of points, point dimension, and number of points. It would
also be interesting to run the experiments done in this work with a large Haddoop cluster to
explore the effect of reducers vs. number of nodes in more detail. The number of centroids
could also be varied, and many more initial centroid sets could be used. The datasets used
in this paper could also have been generated to more closely to resemble the datasets used
in [18].
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Figure 7: Varying initial centroids group, dataset d5, 7 reducers, and 10 virtual hadoop
nodes, a closer look at the effects on IPKMeans and PKMeans

7 Appendix

Figure 8: SSE analysis when varying number of reducers and with 10 hadoop nodes, initial
centroids group is g1, 192000 points
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Figure 9: SSE analysis when varying number of reducers and hadoop nodes, initial centroids
group is g1, 3000 points
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